PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Depth control for biomimetic and hybrid unmanned underwater vehicles

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Unmanned underwater vehicles which use biomimetic mechanisms are becoming increasingly useful in the realisation of tasks requiring silent and efficient propulsion. Complex fish kinematics are simplified to some extent and implemented in such vehicles. One of the essential fish behaviours is their ability to adjust their buoyancy using a swim bladder. This paper covers the issues concerning the implementation of artificial swim bladders as well as depth regulators in two underwater vehicles: biomimetic and hybrid. The control of vehicle depth through buoyancy change was examined in the computer simulation and in the experiment. Two types of artificial swim bladder were tested – a rigid cylinder with a piston and an elastic container with a water pump.
Rocznik
Strony
art. no. e2021024
Opis fizyczny
Bibliogr.13 poz., il., wz., tab., wykr.
Twórcy
  • Chair of Production Engineering, Faculty of Mechanical Engineering, Cracow University of Technology
  • Chair of Production Engineering, Faculty of Mechanical Engineering, Cracow University of Technology
autor
  • Chair of Production Engineering, Faculty of Mechanical Engineering, Cracow University of Technology
Bibliografia
  • 1. Ai, X., Kang, S., & Chou, W. (2018). System Design and Experiment of the Hybrid Underwater Vehicle. 2018 International Conference on Control and Robots, ICCR 2018, 68-72. https://doi.org/10.1109/ICCR.2018.8534493
  • 2. Anderson, J.M., & Chhabra, N.K. (2006). Maneuvering and Stability Performance of a Robotic Tuna. Integrative and Comparative Biology, 42(1), 118-126. https://doi.org/10.1093/icb/42.1.118
  • 3. Anton, M., & Listak, M. (2011). Hydrodynamic optimization of a relative link lengths for a biomimetic robotic fish. 2011 15th International Conference on Advanced Robotics (ICAR), 530-535. https://doi.org/10.1109/ICAR.2011.6088644
  • 4. Aras, M.S.M., Abdullah, S.S., Zambri, M.K.M., & Basar M.F. (2015). Auto depth control for underwater remotely operated vehicles using a flexible balast tank system. https://www.researchgate.net/publication/283533128_Auto_depth_control_for_underwater_remotely_operated_vehicles_using_a_flexible_ballast_tank_system
  • 5. Cai, M., Wang, Y., Wang, S., Wang, R., Ren, Y., & Tan, M. (2020). Grasping Marine Products with Hybrid-Driven Underwater Vehicle-Manipulator System. IEEE Transactions on Automation Science and Engineering, 17(3), 1443-1454. https://doi.org/10.1109/TASE.2019.2957782
  • 6. Chu, W.-S., Lee, K.-T., Song, S.-H., Han, M.-W., Lee, J.-Y., Kim, H.-S., Kim, M.-S., Park, Y.-J., Cho, K.-J., & Ahn, S.-H. (2012). Review of biomimetic underwater robots using smart actuators. International Journal of Precision Engineering and Manufacturing, 13(7), 1281-1292. https://doi.org/10.1007/s12541-012-0171-7
  • 7. Colquhoun, C.T. (n.d.). Development of a biomimetic robotic fish. Retrieved July 2, 2019, from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.538.7314&rep=rep1&type=pdf
  • 8. Conry, M., Keefe, A., Ober, W., Rufo, M., & Shane, D. (2013). BIOSwimmer: Enabling technology for port security. 2013 IEEE International Conference on Technologies for Homeland Security, HST 2013, 364-368. https://doi.org/10.1109/THS.2013.6699031
  • 9. Fossen, T.I. (2011). Handbook of marine craft hydrodynamics and motion control. Wiley
  • 10. Joe, H., & Yu, S.-C. (2016). Iceberg worm: Biomimetic AUV for sea ice thickness survey using non-contact laser ultrasonic method. 2016 IEEE/OES Autonomous Underwater Vehicles (AUV), 44-48. https://doi.org/10.1109/AUV.2016.7778718
  • 11. Katzschmann, R.K., DelPreto, J., MacCurdy, R., & Rus, D. (2018). Exploration of underwater life with an acoustically controlled soft robotic fish. Science Robotics, 3(16), eaar3449. https://doi.org/10.1126/scirobotics.aar3449
  • 12. Lauder, G.V. (2015). Fish Locomotion: Recent Advances and New Directions. Annual Review of Marine Science, 7(1), 521-545. https://doi.org/10.1146/annurev-marine-010814-015614
  • 13. Le Zhang, We, Yonghui Hu, Dandan Zhang, & Long Wang. (2007). Development and depth control of biomimetic robotic fish. 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, 3560-3565. https://doi.org/10.1109/IROS.2007.4398997
  • 14. Liang, J., Wei, H., Wang, T., Wen, L., Wang, S., & Liu, M. (2009). Experimental Research on Biorobotic Autonomous Undersea Vehicle. In Underwater Vehicles. InTech. https://doi.org/10.5772/6702
  • 15. Low, K.H. (2011). Current and future trends of biologically inspired underwater vehicles. 2011 Defense Science Research Conference and Expo (DSR), 1-8. https://doi.org/10.1109/DSR.2011.6026887
  • 16. Maalouf, D., Creuze, V., Chemori, A., Tamanaja, I.T., Mercado, E.C., Muñoz, J.T., Lozano, R., & Tempier, O. (2015). Real-Time Experimental Comparison of Two Depth Control Schemes for Underwater Vehicles. International Journal of Advanced Robotic Systems, 12(2), 13. https://doi.org/10.5772/59185
  • 17. Mai, C., Pedersen, S., Hansen, L., Jepsen, K., & Yang, Z. (2017). Modeling and Control of Industrial ROV’s for Semi-Autonomous Subsea Maintenance Services. IFAC-PapersOnLine, 50(1), 13686-13691. https://doi.org/10.1016/J.IFACOL.2017.08.2535
  • 18. Medvedev, A.V., Kostenko, V.V., & Tolstonogov, A.Y. (2017a). Depth control methods of variable buoyancy AUV. 2017 IEEE OES International Symposium on Underwater Technology, UT 2017. https://doi.org/10.1109/UT.2017.7890333
  • 19. Medvedev, A.V., Kostenko, V.V., & Tolstonogov, A.Y. (2017b, March 29). Depth control methods of variable buoyancy AUV. 2017 IEEE OES International Symposium on Underwater Technology, UT 2017. https://doi.org/10.1109/UT.2017.7890333
  • 20. Melo, J., & Matos, A. (2015). A Pitch-Depth Bottom Following Controller for AUVs using Eigenstructure Assignment. IFAC-PapersOnLine, 48(16), 43-48. https://doi.org/10.1016/J.IFACOL.2015.10.256
  • 21. Minh-Thuan, L., Truong-Thinh, N., & Ngoc-Phuong, N. (2011). Study of artificial fish bladder system for robot fish. 2011 IEEE International Conference on Robotics and Biomimetics, 2126-2130. https://doi.org/10.1109/ROBIO.2011.6181606
  • 22. Morawski, M., Malec, M., Szymak, P., & Trzmiel, A. (2014). Analysis of parameters of traveling wave impact on the speed of biomimetic underwater vehicle. In Solid State Phenomena (Vol. 210). https://doi.org/10.4028/www.scientific.net/SSP.210.273
  • 23. Morawski, M., Słota, A., Zając, J., & Malec, M. (2020). Fish-like shaped robot for underwater surveillance and reconnaissance - Hull design and study of drag and noise. Ocean Engineering, 217(March), 1-10. https://doi.org/10.1016/j.oceaneng.2020.107889
  • 24. Morawski, M., Słota, A., Zając, J., Malec, M., & Krupa, K. (2018). Hardware and low-level control of biomimetic underwater vehicle designed to perform ISR tasks. Journal of Marine Engineering and Technology, 16(4). https://doi.org/10.1080/20464177.2017.1387089
  • 25. Morgansen, K.A., Triplett, B.I., & Klein, D.J. (2007). Geometric Methods for Modeling and Control of Free-Swimming Fin-Actuated Underwater Vehicles. IEEE Transactions on Robotics, 23(6), 1184-1199. https://doi.org/10.1109/LED.2007.911625
  • 26. Nguyen,Q.S.,Park,H.C.,&Byun,D.(2011).Thrust Analysis of a Fish Robot Actuated by Piezoceramic Composite Actuators. Journal of Bionic Engineering, 8(2), 158-164. https://doi.org/10.1016/S1672-6529(11)60019-X
  • 27. Nguyen, T.-T., Nguyen, N.-P., & Dang, M.-N. (2011). Swimming of robotic fish based biologically-inspired approach. 11th International Conference on Control, Automation and Systems (ICCAS), 625-630. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6106079
  • 28. Niu, C., Zhang, L., Bi, S., & Cai, Y. (2012). Development and depth control of a robotic fish mimicking cownose ray. Proceedings of the 2012 IEEE International Conference on Robotics and Biomimetics, ROBIO 2012, 814-818. https://doi.org/10.1109/ROBIO.2012.6491068
  • 29. Robert, K., Huvenne, V.A.I., Georgiopoulou, A., Jones, D.O.B., Marsh, L.D.O., Carter, G., & Chaumillon, L. (2017). New approaches to high-resolution mapping of marine vertical structures. Scientific Reports, 7(1), 9005. https://doi.org/10.1038/s41598-017-09382-z
  • 30. Singh, W., Örnólfsdóttir, E.B., & Stefansson, G. (2014). A Small-Scale Comparison of Iceland Scallop Size Distributions Obtained from a Camera Based Autonomous Underwater Vehicle and Dredge Survey. PLoS ONE, 9(10), e109369. https://doi.org/10.1371/journal.pone.0109369
  • 31. Tangorra, J.L., Mignano, A.P., Carryon, G.N., & Kahn, J.C. (2011). Biologically derived models of the sunfish for experimental investigations of multi-fin swimming. 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, 580-587. https://doi.org/10.1109/IROS.2011.6095094
  • 32. Wen, L., Wang, T., Wu, G., Liang, J., & Wang, C. (2012). Novel Method for the Modeling and Control Investigation of Efficient Swimming for Robotic Fish. IEEE Transactions on Industrial Electronics, 59(8), 3176-3188. https://doi.org/10.1109/TIE.2011.2151812
  • 33. Xiang, X., Yu, C., Niu, Z., & Zhang, Q. (2016). Subsea cable tracking by autonomous underwater vehicle with magnetic sensing guidance. Sensors (Switzerland), 16(8), 1-22. https://doi.org/10.3390/s16081335
  • 34. Yao, X., Yang, G., & Peng, Y. (2017). Nonlinear Reduced-Order Observer-Based Predictive Control for Diving of an Autonomous Underwater Vehicle. Discrete Dynamics in Nature and Society, 2017, 1-15. https://doi.org/10.1155/2017/4394571
  • 35. Yu, J., Sun, F., Xu, D., & Tan, M. (2016). Embedded Vision-Guided 3-D Tracking Control for Robotic Fish. IEEE Transactions on Industrial Electronics, 63(1), 355-363. https://doi.org/10.1109/TIE.2015.2466555.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8f1674db-c2e6-4bb6-932e-5ea05e1eb67b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.