PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Technological Forecasting of Deformations in Flat Parts

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The deformation of a part occurring in the process of grinding directly influences its exploitation and quality parameters. The instability of shape and size, which occurs due to an imbalance of residual stress, can be the one of the major causes of deformation of a part. The decrease in stress slows down the deformation process. Considering the regularities of heat source intensity dependence on the grinding modes, it can be asserted that with increasing grinding depth and grinding wheel hardness, the value increases and it decreases with a growth in a speed of the part and the use of cooling. The higher the heat removal is and the better lubricant properties of the liquid are, the more significant the decrease in is. Changing these values allows regulation of the residual stresses. As a result of the research on determination of deformations, it is recommended to reduce thermal deformations by considering the geometric size of a plate to be machined, linear expansion coefficient of plate material and an allowance for nonflatness from thermal deformations. The value of nonflatness from thermal deformations is directly proportional to linear expansion coefficient of plate material and its square overall dimensions. At the same time, the value of nonflatness is inversely proportional to the plate thickness.
Rocznik
Strony
1--12
Opis fizyczny
Bibliogr. 19 poz., fig.
Twórcy
  • Tchaikovsky Branch “Perm National Research Polytechnic Institute” Federal State Budgetary Institution of Science “Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences“ Institute of Mechanics
  • Silesian University of Technology Poland
autor
  • VSB-Technical University of Ostrava
  • Kaliningrad State Technical University
Bibliografia
  • 1. Ivanova, T.N. (2016). Design and technology support of the grinding process for heavily-machined steel sheets. 2nd International Conference on Industrial Engineering (ICIE-2016). Procedia Engineering. Vol. 150, pp. 782-788. DOI link: https://doi.org/10.1016/j.proeng.2016.07.112.
  • 2. Ivanova, T.N. (2018). Structural-technological methods for reduction of thermal stress in grinding. Journal of Engineering Physics and Thermophysics. Vol. 91, No. 6, pp. 1485-1490, DOI 10.1007/s10891-018-1874-0.
  • 3. Ivanova, T.N. (2019). Thermal stress of abrasive grain during single-pass and multi-pass grinding. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2019.07.668.
  • 4. Ivanova, T.N., Bialy, W., Nordin, V. (2019) Improvement of grinding technology with vortex cooling of steels that are liable to crack propagation. Multidisciplinary Aspects of Production Engineering. Monograph Engineering and Technology. Warszawa. Part 1. p. 9-24.
  • 5. Zakharov, O.V., Khudobin, L.V., Vetkasov, N.I., Sklyarov, I.A. and Kochetkov, A.V. (2016) Abrasive-Jet Machining of Large Hollow Components. Russian Engineering Research, Vol. 36, Issue 6, pp. 469-471.
  • 6. Tyuhta, A.V., Y. Vasilenko, V., Kozlov, A.M. (2016) Ways to Enhance Environmental Flat Grinding by Improving the Technology of the Coolant Supply. Procedia Engineering, pp. 1073-1080 doi: 10.1016/j.proeng.2016.07.217.
  • 7. Zitnansky, J., Zarnovsky, J., Ruzbarsky, J. (2013). Analysis of physical effects in cutting machining. In: Advanced Materials Research, vol. 801, special iss., p. 51-59.
  • 8. J. Paulo Davim. (2013). Machining and Machine-Tools Research and Development.
  • 9. Karl-Heinrich Grote, Jörg Feldhusen. (2011). Dubbel Taschenbuch für den Maschinenbau.
  • 10. Alfred Herbert Fritz, Günter Schulze. (2010). Fertigungstecnik.
  • 11. Fritz Klocke, Wilfried König. (2013). Fertigungsverfahren 2 Schleifen, Honen, Läppen.
  • 12. F. Klocke, Aaron Kuchle. (2011). Manufacturing Processes 2: Grinding, Honing, Lapping.
  • 13. Mikell P. Groover. (2010). Fundamentals of Modern Manufacturing: Materials, Processes, and Systems.
  • 14. Alfred Böge. (2011). Handbuch Maschinenbau Grundlagen und Anwendungen der Maschinenbau-Technik.
  • 15. J. Paulo Davim. (2011). Machining of Hard Materials.
  • 16. Dehong Huo and Kai Cheng. (2013). Micro Cutting Fundamentals and Applications.
  • 17. Mark J. Jackson, Michael P. Hitchiner. (2012). High Performance Grinding and Advanced Cutting Tools.
  • 18. W. Brian Rowe (2010). Modern Grinding Techniques.
  • 19. Hans Kurt Toenshoff, Berend Denkena. (2013). Basics of Cutting and Abrasive Processes.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8f14419f-b2d4-4dfe-baa8-763930a9b95d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.