PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance assessment of real-time multiconstellation GNSS PPP using a low-cost dual-frequency GNSS module

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The release of low-cost dual-frequency (DF) global navigation satellite system (GNSS) modules provides an opportunity for low-cost precise positioning to support autonomous vehicle applications. The new GNSS modules support the US global positioning system (GPS) L1C/L2C or L5 civilian signals, the Russian GNSS Globalnaya Navigazionnaya Sputnikovaya Sistema (GLONASS) L1/L2, Europe’s GNSS Galileo E1/E5b, and Chinese GNSS BeiDou B1/B2 signals. The availability of the DF measurements allows for removal of the ionospheric delay, enhancing the obtained positioning accuracy. Unfortunately, however, the L2C signals are only transmitted by modernized GPS satellites. This means that fewer GPS DF measurements are available. This, in turn, might affect the accuracy and the convergence of the GPS-only precise point positioning (PPP) solution. Multi-constellation GNSS PPP has the potential to improve the positioning accuracy and solution convergence due to the high redundancy of GNSS measurements. This paper aims to assess the performance of real-time quad-constellation GNSS PPP using the low-cost u-blox Z9D-F9P module. The assessment is carried out for both open-sky and challenging environment scenarios. Static, simulated-kinematic, and actual field-kinematic trials have been carried out to evaluate real-time PPP performance. Pre-saved real-time precise orbit and clock products from the Centre National d’Etudes Spatiales are used to simulate the real-time scenario. It is shown that the quad-constellation GNSS PPP using the low-cost u-blox Z9DF9P module achieves decimeter-level positioning accuracy in both the static and simulatedkinematic modes. In addition, the PPP solution convergence is improved compared to the dual- and triple-constellation GNSS PPP counterparts. For the actual kinematic trial, decimeter-level horizontal positioning accuracy is achieved through the GPS + GLONASS + Galileo PPP compared with submeter-level positioning accuracy for the GPS + GLONASS and GPS + Galileo PPP counterparts. Additionally, submeter-level vertical positioning accuracy is achieved through the GPS + GLONASS + Galileo PPP compared with meter-level positioning accuracy for GPS + GLONASS and GPS + Galileo PPP counterparts.
Rocznik
Strony
37--56
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
  • Department of Civil Engineering, Ryerson University, Toronto, Canada
  • Department of Civil Engineering, Ryerson University, Toronto, Canada
Bibliografia
  • Böhm J., Möller G., Schindelegger M., Pain G., Weber R. (2015) Development of an improved empirical model for slant delays in the troposphere (GPT2w), GPS Solutions, Vol. 19, 433-441.
  • Dan S., Santra A., Mahato S., Bose A. (2020) On use of low cost, compact GNSS modules for ionosphere monitoring.
  • De Bakker P.F., Tiberius C.C. (2017) Real-time multi-GNSS single-frequency precise point positioning, GPS Solutions, Vol. 21, 1791-1803.
  • Elmezayen A., El-Rabbany A. (2019) Precise point positioning using world’s first dual-frequency GPS/Galileo Smartphone, Sensors, Vol. 19, 2593.
  • Elsheikh M., Yang H., Nie Z., Liu F., Gao Y. (2018) Testing and analysis of instant PPP using freely available augmentation corrections, Proceedings of the 31st International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2018), Miami, FL, USA, 2018, 24-28.
  • Elsobeiey M., Al-Harbi S. (2016) Performance of real-time precise point positioning using IGS real-time service, GPS Solutions, Vol. 20, 565-571.
  • IGS. (2020) International GNSS real-time service, Available at: http://www.igs.org/rts [Accessed May 25, 2020].
  • Kouba J. (2015) A guide to using international GNSS service (IGS) products, IGS [Online]. Available at: https://kb.igs.org/hc/en-us/articles/201271873-A-Guide-to-Using-the-IGSProducts [Accessed December 25, 2019].
  • Krietemeyer A., Marel H.V.D., Giesen N.V.D., Veldhuis M.-C.T. (2020) High quality zenith tropospheric delay estimation using a low-cost dual-frequency receiver and relative antenna calibration. Remote Sensing, Vol. 12, 1393.
  • Nie Z., Liu, F., Gao, Y. (2020) Real-time precise point positioning with a low-cost dualfrequency GNSS device, GPS Solutions, Vol. 24, 9.
  • Nie Z., Yang H., Zhou P., Gao Y., Wang Z. (2019) Quality assessment of CNES real-time ionospheric products, GPS Solutions, Vol. 23, 11.
  • Psychas D., Bruno J., Massarweh L., Darugna F. (2019) Towards sub-meter positioning using android raw GNSS measurements, 32nd International Technical Meeting of the Satellite Division of the Institute of Navigation, ION GNSS+ 2019, 2019, Institute of Navigation, 3917-3931.
  • Rizos C., Montenbruck O., Weber R., Weber G., Neilan R., Hugentobler U. (2013) The IGS MGEX experiment as a milestone for a comprehensive multi-GNSS service, Proceedings of ION PNT, Honolulu, Hawaii 289-295.
  • Saastamoinen. (1973) Contributions to the theory of atmospheric refraction, Bulletin Géodésique, Vol. 107, 13-34.
  • U-Blox. (2020) ZED-F9P module Available at: https://www.u-blox.com/en/product/zed-f9pmodule [Accessed May 30, 2020].
  • US-Coast-Guard. GPS constellation status. Available at: https://www.navcen.uscg.gov/?Do=constellationStatus [Accessed January 21, 2020].
  • Wang Z., Li Z., Wang L., Wang X., Yuan H. (2018) Assessment of multiple GNSS real-time SSR products from different analysis centers, ISPRS International Journal of GeoInformation, Vol. 7, 85.
  • Wu Q., Sun M., Zhou C., Zhang P. (2019) Precise point positioning using dual-frequency GNSS observations on smartphone, Sensors, Vol. 19, 2189.
  • Xu, G., Xu, Y. (2016) GPS: Theory, algorithms and applications, Springer: Berlin/Heidelberg, Germany.
  • Zhang Q., Zhao L., Zhao L., Zhou J. (2018) An improved robust adaptive Kalman filter for GNSS precise point positioning, IEEE Sensors Journal, Vol. 18, 4176-4186.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8f137303-bdb3-40b1-90a8-becaa9c3262a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.