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ABSTRACT. The release of low-cost dual-frequency (DF) global navigation satellite system 
(GNSS) modules provides an opportunity for low-cost precise positioning to support 
autonomous vehicle applications. The new GNSS modules support the US global positioning 
system (GPS) L1C/L2C or L5 civilian signals, the Russian GNSS Globalnaya 
Navigazionnaya Sputnikovaya Sistema (GLONASS) L1/L2, Europe’s GNSS Galileo E1/E5b, 
and Chinese GNSS BeiDou B1/B2 signals. The availability of the DF measurements allows 
for removal of the ionospheric delay, enhancing the obtained positioning accuracy. 
Unfortunately, however, the L2C signals are only transmitted by modernized GPS satellites. 
This means that fewer GPS DF measurements are available. This, in turn, might affect the 
accuracy and the convergence of the GPS-only precise point positioning (PPP) solution. 
Multi-constellation GNSS PPP has the potential to improve the positioning accuracy and 
solution convergence due to the high redundancy of GNSS measurements. This paper aims to 
assess the performance of real-time quad-constellation GNSS PPP using the low-cost u-blox 
Z9D-F9P module. The assessment is carried out for both open-sky and challenging 
environment scenarios. Static, simulated-kinematic, and actual field-kinematic trials have 
been carried out to evaluate real-time PPP performance. Pre-saved real-time precise orbit and 
clock products from the Centre National d’Etudes Spatiales are used to simulate the real-time 
scenario. It is shown that the quad-constellation GNSS PPP using the low-cost u-blox Z9D-
F9P module achieves decimeter-level positioning accuracy in both the static and simulated-
kinematic modes. In addition, the PPP solution convergence is improved compared to the 
dual- and triple-constellation GNSS PPP counterparts. For the actual kinematic trial, 
decimeter-level horizontal positioning accuracy is achieved through the 
GPS + GLONASS + Galileo PPP compared with submeter-level positioning accuracy for the 
GPS + GLONASS and GPS + Galileo PPP counterparts. Additionally, submeter-level vertical 
positioning accuracy is achieved through the GPS + GLONASS + Galileo PPP compared with 
meter-level positioning accuracy for GPS + GLONASS and GPS + Galileo PPP counterparts. 
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1. INTRODUCTION 
The precise point positioning (PPP) technique is attractive to the global navigation satellite 
system (GNSS) community due to its high precision without the need for additional base 
station infrastructure. Real-time precise GNSS satellite orbit and clock products have recently 
become available through the international GNSS service (IGS) and several analysis centers 
(Wang et al., 2018). This allows users to apply real-time global positioning system (GPS) PPP 
(Elsobeiey and Al-Harbi, 2016) or multi constellation GNSS PPP (Wang et al., 2018). 
Usually, a costly geodetic-grade GNSS receiver is required for real-time PPP to achieve 
precise positioning, which is an obstacle to applying real-time PPP for a wide range of 
commercial applications. To overcome this barrier, a number of researchers have adopted and 
used real-time single-frequency (SF)–PPP because of the low cost of SF GNSS chipsets and 
their adaptability for several applications (de Bakker and Tiberius, 2017, Elsheikh et al., 
2018). The main challenge in real-time SF–PPP is eliminating ionospheric delay, as the 
quality of real-time ionosphere products significantly affects SF–PPP performance (Nie et al., 
2019). In a previous paper (de Bakker and Tiberius, 2017), a u-blox M8T EVK SF GNSS 
device and a batch antenna were used for both static and kinematic experiments. IGS real-
time orbit and clock products were also used. In addition, the predicted ionospheric maps 
from the Centre for Orbit Determination in Europe were utilized to account for the 
ionospheric delay. In that research, real-time SF GPS + Russian GNSS Globalnaya 
Navigazionnaya Sputnikovaya Sistema (GLONASS) PPP showed comparable results to the 
GPS-only counterpart in static and kinematic experiments. Moreover, the positioning 
performance was slightly improved through real-time SF GNSS PPP with a 30° elevation 
angle in static and kinematic experiments (de Bakker and Tiberius, 2017). 

Nie et al. (2019), using real-time SF–PPP, achieved submeter-level horizontal positioning 
accuracy and meter-level vertical positioning accuracy under an open-sky environment 
through the real-time ionosphere products of the Centre National d’Etudes Spatiales (CNES). 
The release of dual-frequency (DF) GNSS smartphones, such as the Xiaomi Mi 8, which 
supports DF measurements for GPS and Europe’s GNSS Galileo satellite systems, allows 
users to remove the ionospheric delay, which in turn leads to an enhanced PPP solution. 
However, the quality of the smartphone’s observations is relatively lower than those obtained 
from geodetic-grade GNSS receivers, and its exact antenna location is unknown. As a result, 
DF PPP through smartphones can achieve decimeter-to-submeter-level static positioning 
accuracy (Elmezayen and El-Rabbany, 2019, Psychas et al., 2019); however, this is not better 
than 2-m kinematic positioning accuracy (Wu et al., 2019). 

Low-cost DF GNSS modules have recently become available, including the u-blox ZED-F9P 
module (u-blox). DF measurements enable ionosphere-free (IF) linear combinations, 
removing the ionospheric delay. This, in turn, increases the ability to provide high positioning 
accuracy with low-cost GNSS modules. The u-blox ZED-F9P module has been examined for 
zenith total tropospheric delay estimation (Krietemeyer et al., 2020) and ionosphere 
monitoring (Dan et al., 2020). This GNSS module supports only the civil signals L1 C/A and 
L2C for the GPS constellation. As of January 2021, the GPS constellation consists of the 
following: eight satellites of Block IIR and two of Block III, which can transmit one civil 
signal (L1 C/A); six satellites of Block IIR-M, which can transmit two civil signals (L1 C/A 
and L2C); and 12 satellites of Block IIF, which can transmit three civil signals (L1 C/A, L2C, 
and L5) (US Coast Guard). As a result, few DF measurements from the GPS are available to 
form the conventional IF linear combination. This may affect the resulting positioning 
accuracy, especially for kinematic applications in which all visible satellites need to be 
included in the positioning computation. In a previous paper (Nie et al., 2020), real-time DF 
low-cost GPS + GLONASS PPP was developed using the u-blox ZED-F9P along with CNES 



39 

real-time products. The research focused on improving positioning accuracy and convergence 
behavior by combining both IF linear combination of DF measurements from GPS satellites 
that support the L2C signal and the ionosphere-corrected SF code measurements from 
satellites that support only L1 C/A. The CNES real-time ionosphere products were used to 
account for the ionospheric delay in the SF code measurements. The results showed that the 
proposed real-time DF–PPP solution is comparable to the SF–PPP for the first 3 minutes of 
the static experiment, but the DF–PPP accuracy was improved over time compared to the SF–
PPP. For the kinematic experiment, the proposed DF PPP showed similar convergence 
behavior as the real-time SF–PPP (Nie et al., 2020). The DF–PPP achieved decimeter-level 
horizontal and vertical positioning accuracy levels under an open-sky environment. As 
mentioned previously, the CNES real-time ionosphere products were used to mitigate the 
ionospheric delay of the SF code observations, which only can achieve positioning accuracy 
at the decimeter-to-submeter level (Nie et al., 2019). As a result, adding SF measurements 
may degrade the resulting positioning accuracy with low-quality ionosphere products. 
Moreover, the contribution of SF code measurements can be decreased or ignored under 
extreme ionospheric conditions due to the high uncertainty of ionospheric corrections (Nie et 
al., 2020). 
In the present study, improvements in the positioning solution accuracy and convergence time 
are thoroughly analyzed using measurements from a quad-constellation, namely, GPS, 
GLONASS, Galileo, and Chinese GNSS BeiDou. An improved robust adaptive Kalman filter 
(IRKF) is adopted and used to remove the measurement outliers and compensate for the errors 
in the dynamic model, enhancing both the positioning solution accuracy and the convergence 
time. To validate the PPP algorithm’s effectiveness, field trials in static, simulated-kinematic, 
and kinematic modes are conducted. The mathematical models for real-time multi 
constellation GNSS PPP and IRKF algorithms are first described, followed by a presentation 
of field trials and an analysis of the results. Concluding remarks are then summarized in the 
final section. 

2. MULTI CONSTELLATION GNSS PPP MATHEMATICAL MODELS 

In this work, GPS L1/L2, GLONASS L1/L2, Galileo E1/E5b, and BeiDou B1/B2 
pseudorange and carrier-phase measurements are used to form the IF linear combinations. The 
measurement types used for the four constellations are presented in Table 1. 

Table 1. GPS, GLONASS, Galileo, and BeiDou pseudorange and carrier-phase measurements 

Receiver type GPS GLONASS Galileo BeiDou 

U-blox-F9P C1C and L1C;  
C2L and L2L 

C1C and L1C; 
C2C and L2C 

C1C and L1C; 
C7Q and L7Q 

C2I and L2I; 
C7I and L7I 

The IF linear combinations of the four constellations’ pseudorange and carrier-phase 
measurements are applied as follows: 

 
G G G G G
IF r w PIFP b m zwdρ ε= + + +  (1) 

 
G G G G G G
IF r w IF IFb m zwd Nρ εΦΦ = + + + +  (2) 
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R R G R R R
IF r w PIFP b m zwd ISBρ ε= + + + +  (3) 

 
R R G R R R R
IF r w IF IFb m zwd N ISBρ εΦΦ = + + + + +  (4) 

 
E E G E E E
IF r w PIFP b m zwd ISBρ ε= + + + +  (5) 

 E E G E E E E
IF r w IF IFb m zwd N ISBρ εΦΦ = + + + + +  (6) 

 C C G C C C
IF r w PIFP b m zwd ISBρ ε= + + + +  (7) 

 
C C G C C C C
IF r w IF IFb m zwd N ISBρ εΦΦ = + + + + +  (8) 

where:  
 G, R, E, and C  –  GPS, GLONASS, Galileo, and BeiDou satellite systems, 
respectively; 
 ,G G

IF IFP Φ , ,R R
IF IFP Φ , ,E E

IF IFP Φ ,C C
IF IFP and Φ  – GPS, GLONASS, Galileo, and BeiDou 

IF linear combinations after accounting for the dry tropospheric delay, relativity, Sagnac 
delay, phase center offset and variation, Earth tides, ocean loading, and phase wind up errors; 
 , , ,G R E Candρ ρ ρ ρ – geometric range between the receiver’s antenna phase center and 
the corresponding satellite antenna phase center; 

 G G
r rb c dt= ×  – receiver clock error;  

  zwd – the zenith wet delay; 

 wm  – the wet mapping function; 

 G
IFN , R

IFN , E
IFN , and C

IFN –  the GPS, GLONASS, Galileo, and BeiDou IF ambiguity 
terms (in meters); 
 , ,R E CISB ISB and ISB  –  the intersystem biases (ISBs) for the GLONASS, Galileo, 
and BeiDou satellite systems; 

 ,P ϕε ε  – the noise and multipath effect for the pseudorange and carrier-
phase measurements. 

In the adopted GNSS PPP model, the pre-saved real-time orbit and clock corrections for GPS, 
GLONASS, Galileo, and BeiDou are obtained from the CNES analysis center 
(http://www.ppp-wizard.net/products/REAL_TIME/). The code biases obtained from the 
CNES analysis center are applied to the GNSS pseudorange measurements to make them 
consistent with the satellite clock products. The tropospheric delay’s dry zenith component is 
accounted for using the Saastamoinen model (Saastamoinen, 1973), while the dry and wet 
mapping functions are determined using the Vienna mapping function (VMF) (Böhm et al., 
2015). The effects of relativity, Sagnac delay, phase center offset and variation, Earth tides, 
ocean loading, and phase wind-up are modeled as described by Kouba (2015). 

3. METHODOLOGY 

An IRKF is used in this research to reduce the effect of the measurement outliers and the 
dynamic model error on the obtained positioning accuracy. The modified measurement 
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covariance matrix is constructed for the code and carrier-phase measurements of all four 
constellations. The IRKF is implemented in two steps, namely, the prediction and update of 
the state vector estimation: 

Step 1: The predicted state vector and its covariance matrix are estimated as follows: 

 , 1 1( ) ( )k k k kx xδ δ− −− =Φ +  (9) 

 , 1 1 , 1 , 1( ) ( ) T
k k k k k k k kP P Q− − − −− = Φ + Φ +  (10) 

where: 
 xδ  – state vector, which includes position errors, receiver clock error, zenith 

wet tropospheric delay, ISB for R, E, and C satellite systems, and 
ambiguity; 

 (-) – refers to the predicted state;  
 (+) – refers to the updated state;  
 k  and k-1 – any two subsequent epochs; 
 Φ  – transition matrix, which is the identity matrix;  
 P  – state vector covariance matrix;  
 Q  – covariance matrix of the process noise.  

Step 2: An adaptive factor α  is determined to balance the contribution between the predicted 
state vector and the estimated counterpart using the new measurements, as detailed by Xu and 
Xu (2016): 
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where: 
 c



and 1c  – empirical values, which are chosen as 11.5, 4.5c c= =


;  
 kX∆



 – the bias statistic and can be determined as follows: 

 ( )
( ( ))k

k k

k
X

x x
tr P

δ δ
∆

− −
=

−





 (12) 

where: 
 kxδ   – the state vector estimate using the new measurements; 
 tr – the matrix trace. 

 The higher the value of kX∆


, the lower the value of the adaptive factor α  leading to lower 
contribution from the predicted state vector.  

Step 3: The Kalman gain K and the updated state vector covariance matrix are then estimated 
as follows: 
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1 1 1( ) ( )T T

k k k k k k kK P H H P H R
α α

−= − − + 
  

 (13) 

 ( ) ( )( ) ( )
T T

k k k k k k k k kP I K H P I K H K R K+ = − − − +  (14) 

Step 4: The standardized residuals are estimated for the code and carrier-phase measurements 
of all four constellations. A robust classification factor F is then determined for each specific 
measurement type individually. The classification factor for the ith number of measurements 
in the jth type of measurements, j

iF , can be estimated using the t-test statistics, as shown 
elsewhere (Zhang et al., 2018): 
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 (15) 

where: 
  j

iT  – the t-test statistic for the ith measurement in the jth type, as described by 
Zhang et al. (2018);  

 1,t t


 – the t-test critical values at 1andα α


 significance levels; 
 1j jnν = −  – the degree of freedom; 

 jn  – number of jth type measurements; and significance levels are chosen as 
10.15 0.01andα α= =



. 

The elements of the modified measurement covariance matrix R  can be constructed as 
follows: 
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where: 
 PR and Rϕ  – the covariance matrices for the pseudorange and carrier-phase 
measurements for each satellite system, 
 G, R, E, and C – the GPS, GLONASS, Galileo, and BeiDou satellite systems. 
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R  is determined based on both the corresponding elements of the original covariance matrix 
R  and the classification factors as follows: 

 
j

j i
i j

i

RR
F

=  (17) 

Step 5: The Kalman gain and the updated state covariance matrix can then be determined 
using the modified measurement covariance matrix R  as follows: 

 
1 1 1( ) ( )T T

k k k k k k kK P H H P H R
α α

−= − − + 
  



 (18) 

 ( ) ( )( ) ( )
T T

k k k k k k k k kP I K H P I K H K R K+ = − − − +
    

 (19) 

Step 6: The updated state vector can be determined as follows: 

 ( ) ( ) ( )k k k k k kx x K z H xδ δ δ δ+ = − + − −  


 (20) 

where: 
 zδ  – consists of the differences between the IF linear combinations GNSS 
measurements and the predicted counterparts. The full PPP processing details are summarized 
in Table 2. 

Table 2. PPP processing details 

Constellations GPS, GLONASS, Galileo, and BeiDou 

Observations used IF linear combinations of pseudorange and carrier phase  

Elevation mask angle 7.5˚ 

Observations weighting  Elevation dependent [1/sin (ε)] 

Estimation filters IRKF 

Satellites’ orbit and clock CNES real-time products 

Satellite antenna phase 
center offset and variation Corrected (Rizos et al., 2013) 

Tropospheric delay 

Dry: applied using Saastamoinen model along with VMF mapping 
functions; 
Wet: estimated, modeled as a random walk process with spectral 
density 10−9 m2/s 

Receiver clock error Estimated, modeled as a random walk process  
with spectral density 105 m2/s 

ISBR, ISBE, and ISBB Estimated, modeled as random walk processes  
with spectral density 10−7 m2/s 

Ambiguities Estimated (float values), modeled as random constants 
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Site displacements Solid Earth tides and ocean loading were applied  
as in the paper by Kouba (2015) 

Relativity effect Applied as in the paper by Kouba (2015) 

Phase wind-up Applied as in the paper by Kouba (2015) 

4. EXPERIMENTAL SETUP AND ANALYSIS OF RESULTS 
Real-time multi constellation GNSS PPP through the IRKF was assessed in static, simulated-
kinematic, and actual kinematic modes. A u-blox ZED-F9P GNSS module was connected to a 
u-blox patch antenna, and GNSS measurements were collected at the rate of 1 Hz. The 
BeiDou satellite system was excluded from the actual kinematic processing due to the low 
number of visible BeiDou satellites during the data collection period. CNES pre-saved real-
time orbit and clock products were used to simulate the real-time scenario. The IRKF was 
used as the estimation filter, as described in the “Methodology” section. The collected 
measurements were processed in different modes, namely, real-time GPS + GLONASS PPP 
(GR–PPP), GPS + Galileo PPP (GE–PPP), GPS + GLONASS + Galileo PPP (GRE–PPP), 
GPS + GLONASS + BeiDou PPP (GRC–PPP), and GPS + GLONASS + Galileo + BeiDou 
PPP (GREC) modes. To provide a reference solution, NovAtel’s waypoint inertial explorer 
(IE) software was used to process the GNSS measurements in the carrier-phase-based 
differential GNSS (DGNSS) mode. 

4.1. Static field trial 

A field trial was conducted in a suburban area with an open-sky environment on June 20, 
2020, and this process lasted for about 60 minutes. Figure 1 shows the visibility of the visible 
GNSS satellites during the whole data collection period. The minimum number of satellites 
was five, the maximum number was 25, and the elevation mask angle was 7.5°. Figures 2–4 
present the positioning errors of the real-time GR–PPP, GE–PPP, GRC–PPP, GRE–PPP, and 
GREC–PPP solutions through the IRKF in the east, north, and up directions, respectively. The 
convergence performance of the GREC–PPP solution is similar to that of the GRC–PPP 
solution in the east and north directions and similar to the GRE–PPP solution in the up 
direction. The GE–PPP solution shows the worst performance, especially in the east direction. 
After about 30 minutes, the performances of the GR–PPP, GE–PPP, GRC–PPP, GRE–PPP, 
and GREC–PPP solutions tend to be similar in all positioning components, except for the east 
component, where the GE–PPP shows the worst performance. 
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Figure 1. Static field trial: number of observable GPS + GLONASS, GPS + Galileo, 
GPS + GLONASS + BeiDou, GPS + GLONASS + Galileo, and 

GPS + GLONASS + Galileo + BeiDou satellites 

 

Figure 2. Static field trial: east positioning error of real-time GR–PPP, GE–PPP, GRE–PPP,  
GRC–PPP, and GREC–PPP solutions 

 
Figure 3. Static field trial: north positioning error of real-time GR–PPP, GE–PPP, GRE–PPP,  

GRC–PPP, and GREC–PPP solutions 
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Figure 4. Static field trial: up positioning error of real-time GR–PPP, GE–PPP, GRE–PPP,  
GRC–PPP, and GREC–PPP solutions 

To better assess the performance of the different positioning modes, the root-mean-square 
(RMS) error for each positioning component is calculated for different time windows of 
10 minutes, 20 minutes, 30 minutes, 40 minutes, 50 minutes, and 60 minutes, as shown in 
Figures 5–7. As can be seen, the north direction’s positioning accuracy is generally better than 
that of the east and up directions. For the same time window, the quad-constellation GNSS 
PPP (GREC–PPP) solution improves the positioning accuracy in comparison with the triple-
constellation GNSS PPP (GRE–PPP and GRC–PPP) solutions and the dual-constellation 
GNSS PPP (GE–PPP and GR–PPP) solutions for all positioning components. For example, a 
20-cm accuracy level is obtained within 20 minutes in the east and up directions and within 
10 minutes in the north direction for the GREC–PPP solution. On the other hand, the GR–
PPP, GE–PPP, GRE–PPP, and GRC–PPP solutions achieve 20-cm accuracy within 
40 minutes in the east and north directions and within 30 minutes in the up direction.  

 

Figure 5. Static field trial: RMS error (m) in the east direction of real-time GR–PPP, GE–PPP,  
GRE–PPP, GRC–PPP, and GREC–PPP solutions for different time windows 
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Figure 6. Static field trial: RMS error (m) in the north direction of real-time GR–PPP, GE–PPP, and 
GRE–PPP, GRC–PPP, and GREC–PPP solutions for different time windows 

 

Figure 7. Static field trial: RMS error (m) in the up direction of real-time GR–PPP, GE–PPP, GRE–
PPP, GRC–PPP, and GREC–PPP solutions for different time windows 

The RMS error and the mean of the GR–PPP, GE–PPP, GRE–PPP, GRC–PPP, and GREC–
PPP solutions in the east, north, and up directions are presented in Table 3. The GREC–PPP 
solution shows the best positioning accuracy for all positioning components, which coincides 
with the results from Figures 5–7. The accuracy of the GR–PPP solution is improved from 
0.199 m, 0.183 m, and 0.231 m in the east, north, and up directions, respectively, to 0.197 m, 
0.177 m, and 0.234 m for the GRE–PPP solution. The GE–PPP and GRC–PPP solutions show 
similar levels of positioning accuracy in the north and up directions, which coincides with the 
results of Figures 6 and 7. The RMS of the GE–PPP positioning errors is 0.121 m and 
0.237 m in the north and up directions, respectively, compared with 0.121 m and 0.224 m for 
the GRC–PPP. The GE–PPP solution’s accuracy is improved from 0.205 m in the east 
direction to 0.189 m for the GRC–PPP solution. The GR–PPP, GE–PPP, GRC–PPP, and 
GRE–PPP solutions show similar levels of positioning accuracy in the up direction. 
Additionally, the GR–PPP solution’s accuracy is improved from 0.199 m and 0.183 m in the 
east and north directions, respectively, to 0.189 m and 0.121 m for the GRC–PPP solution. 
Although this presents only a slight improvement in the east direction, it shows an 
improvement of 34% in the north direction. The GRE–PPP accuracy is improved by 25%, 
52%, and 27% in the east, north, and up directions, respectively, compared with the GREC–
PPP solution. Moreover, the GRC–PPP solution is improved by 23%, 30%, and 24% in the 
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east, north, and up directions, respectively, compared with the GREC–PPP solution. In 
general, decimeter-level positioning accuracy in both east and up directions and centimeter-
level positioning accuracy in the north direction is achieved through the IRKF-based quad-
constellation GNSS PPP. 

Table 3. RMS error and mean error (m) in the east, north, and up directions for real-time GR-PPP,  
GE-PPP, GRC-PPP, GRE-PPP, and GREC-PPP–static field trial 

Directions 
GR-PPP GE-PPP GRC-PPP GRE-PPP GREC-PPP 

RMS Mean RMS Mean RMS Mean RMS Mean RMS Mean 

East 0.199 0.163 0.205 0.119 0.189 0.153 0.197 0.116 0.147 0.111 

North 0.183 0.076 0.121 0.071 0.121 0.072 0.177 0.087 0.085 0.089 

Up 0.231 0.181 0.237 0.124 0.224 0.184 0.234 0.139 0.171 0.167 

4.2. Simulated-kinematic field trial 

The field trial was conducted in a suburban area with an open-sky environment on June 20, 
2020, and this lasted for 2 hours. Figure 8 shows the visibility of the visible GNSS satellites 
during the whole data collection period. The minimum number of satellites was six, the 
maximum number was 25, and the elevation mask angle was 7.5°. The process noise for the 
receiver’s position was adjusted to mimic the kinematic processing to assess the positioning 
performance in a simulated-kinematic mode under an open-sky environment. Additionally, 
the filter was forced to restart after 1 hour to evaluate the quad-constellation GNSS PPP’s re-
convergence performance. The positioning errors of the real-time GR–PPP, GE–PPP, GRC–
PPP, GRE–PPP, and GREC–PPP solutions through the IRKF in the east, north, and up 
directions, respectively, are presented in Figures 8–11. As can be seen, the GREC–PPP and 
GRE–PPP solutions show similar performances in the first hour of the data set in the east and 
north directions. However, the GREC–PPP solution shows better performance than the GRE–
PPP solution in the up direction. The GE–PPP solution shows the worst performance in the 
east and north directions, but it shows a performance comparable to that of the GRE–PPP 
solution in the up direction. At the start of the second hour, the GREC–PPP shows the best 
convergence in the north and up directions and with superiority of the GE–PPP solution in the 
east direction. 
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Figure 8. Simulated-kinematic field trial: number of observable GPS + GLONASS, GPS + Galileo, 
GPS + GLONASS + BeiDou, GPS + GLONASS + Galileo, and 

GPS + GLONASS + Galileo + BeiDou satellites 

 

Figure 9. Simulated-kinematic field trial: east positioning error of real-time GR–PPP, GE–PPP,  
GRE–PPP, GRC–PPP, and GREC–PPP solutions 

 

Figure 10. Simulated-kinematic field trial: north positioning error of real-time GR–PPP, GE–PPP, 
GRE–PPP, GRC–PPP, and GREC–PPP solutions 
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Figure 11. Simulated-kinematic field trial: up positioning error of real-time GR–PPP, GE–PPP,  

GRE–PPP, GRC–PPP, and GREC–PPP solutions 

Another representation of the GR–PPP, GE–PPP, GRC–PPP, GRE–PPP, and GREC–PPP 
solutions’ errors is shown in Figure 12. In this representation, the cumulative distribution 
function (CDF) of the horizontal and vertical positioning errors is determined to assess the 
quad-constellation GNSS PPP solution. As shown in Figure 12, about 95% of the horizontal 
positioning errors of the GREC–PPP solution are <0.5 m, and about 98% of the vertical 
positioning errors are <0.5 m. Additionally, the GRE–PPP solution shows comparable 
performance to the GREC–PPP solution in the horizontal direction. For the GE–PPP, GR–
PPP, and GRC–PPP solutions, about 95% of the horizontal positioning errors are <1 m, and 
98% of the vertical positioning errors are <1.5 m. This represents a significant improvement 
in the positioning performance through the quad-constellation GNSS PPP. The CDF confirms 
that both the GREC–PPP and the GRE–PPP solutions show similar performance in the 
horizontal direction and outperform the GR–PPP, GE–PPP, and GRC–PPP solutions. 
Moreover, the GREC–PPP solution shows the best performance in the vertical direction. 

 

Figure 12. CDF for horizontal error (left) and vertical error (right) of real-time GR–PPP, GE–PPP, 
GRC–PPP, GRE–PPP, and GREC–PPP solutions-simulated-kinematic field trial 

To assess the overall positioning accuracy, the RMS and mean of the positioning errors are 
presented in Table 4. The RMS and mean are estimated for the positioning errors within the 2-
hour data session. It can be seen that the positioning accuracy of the GREC–PPP solution is at 
the decimeter level in all positioning components. The accuracy of the GRE–PPP solution in 
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the up direction is improved from 0.767 m to 0.337 m for the GREC–PPP solution. The 
accuracy of the GRC–PPP solution is improved by 31%, 40%, and 51% in the east, north, and 
up directions, respectively, compared with the GREC–PPP solution. The accuracy of the GE–
PPP solution is improved from 0.506 m, 0.483 m, and 0.767 m in the east, north, and up 
directions, respectively, to 0.414 m, 0.309 m, and 0.337 m for the GREC–PPP solution. 
Moreover, the GR–PPP solution is significantly improved by 30%, 55%, and 60% in the east, 
north, and up directions, respectively, compared with the GREC–PPP solution. Meanwhile, 
the GRC–PPP solution shows similar positioning accuracy as the GE–PPP solution and is 
slightly better than the GR–PPP solution. This is a result of the low number of visible BeiDou 
satellites. On the other hand, the accuracy of the GRE–PPP solution is better than that of both 
the GE–PPP and GR–PPP solutions due to the high visibility of GPS, GLONASS, and Galileo 
satellites, as shown in Figure 8. 

Table 4. RMS error and mean error (m) in the east, north, and up directions of real-time GR-PPP,  
GE-PPP, GRB-PPP, GRE-PPP, and GREB-PPP–simulated kinematic field trial 

Directions 
GR-PPP GE-PPP GRC-PPP GRE-PPP GREC-PPP 

RMS Mean RMS Mean RMS Mean RMS Mean RMS Mean 

East 0.587 0.459 0.506 0.378 0.598 0.462 0.406 0.317 0.414 0.327 

North 0.685 0.266 0.483 0.158 0.513 0.234 0.325 0.197 0.309 0.192 

Up 0.853 0.327 0.767 0.359 0.701 0.388 0.670 0.305 0.337 0.145 

4.3. Kinematic field trial 

The field trial was conducted in an urban area with a challenging environment that included 
tall buildings and trees near the road (about 3 m). The trial was conducted on June 22, 2020, 
and it lasted for about 33 minutes. The trajectory of the field trial is shown in Figure 13. The 
u-blox patch antenna is mounted on the floor of the vehicle. GPS, GLONASS, and Galileo 
measurements were logged using a laptop connected to the u-blox ZED-F9P GNSS module. 
As shown in Figure 14, the minimum number of satellites was <5, and the maximum number 
was 21. Figures 15–17 show the convergence performances of the real-time GR–PPP, GE–
PPP, and GRE–PPP solutions through the IRKF for all positioning components. As can be 
seen, the GR–PPP solution presents the worst positioning performance compared to both the 
GE–PPP and GRE–PPP solutions. This is due to the low number of visible GLONASS 
satellites during the field trial data collection. Both the GE–PPP and GRE–PPP solutions 
show similar performances in the first 3 minutes. However, with the passage of time, the 
GRE–PPP solution shows better performance than the GE–PPP counterpart. The majority of 
the positioning error spikes are smoothed through the triple-constellation GNSS PPP, leading 
to a more stable positioning solution. Additionally, the positioning solutions are degraded 
with time, especially in the up directions, due to the high variability of the satellites. 
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Figure 13. Trajectory of the kinematic field trial: Toronto, Ontario, Canada (June 22, 2020) 

 
Figure 14. Kinematic field trial: number of observable GPS + GLONASS, GPS + Galileo, 

GPS + GLONASS + Galileo satellites 

 

Figure 15. Kinematic field trial: east positioning error of real-time GR–PPP, GE–PPP,  
and GRE–PPP solutions 



53 

 

Figure 16. Kinematic field trial: north positioning error of real-time GR–PPP, GE–PPP, and GRE–
PPP solutions 

 

Figure 17. Kinematic field trial: up positioning error of real-time GR–PPP, GE–PPP, and GRE–PPP 
solutions 

To further assess the triple-constellation GNSS PPP through the IRKF, both the RMS and 
mean for each positioning component of the GR–PPP, GE–PPP, and GRE–PPP solutions are 
presented in Table 5. As shown in the table, the GR–PPP solution shows the worst 
performance, which coincides with Figures 15–17. The positioning accuracy is at the meter 
level in both the horizontal and vertical directions. Meanwhile, the GE–PPP solution shows 
much better positioning accuracy than the GR–PPP counterpart. The accuracy of the GR–PPP 
solution is improved from 1.224 m, 1.877 m, and 3.056 m in the east, north, and up directions, 
respectively, to 0.409 m, 0.503 m, and 1.165 m for the GE–PPP counterpart. Additionally, the 
accuracy of the GE–PPP solution is improved from 0.409 m, 0.503 m, and 1.165 m in the 
east, north, and up directions, respectively, to 0.390 m, 0.308 m, and 0.729 m for the GRE–
PPP solution. This represents an improvement of 5%, 38%, and 37% in the east, north, and up 
directions, respectively. The overall positioning accuracy of the GRE–PPP solution is at the 
decimeter and submeter levels in the horizontal and vertical directions, respectively. This is 
worse than the static and the simulated-kinematic trials, which is mainly due to the low 
number of visible satellites during the kinematic field trial. 
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Table 5. RMS error and mean error (m) in the east, north, and up directions of real-time GR-PPP,  
GE-PPP, and GRE-PPP-kinematic field trial 

Directions 
GR-PPP GE-PPP GRE-PPP 

RMS Mean RMS Mean RMS Mean 

East 1.224 0.785 0.409 0.308 0.390 0.324 

North 1.877 0.876 0.503 0.212 0.308 0.160 

Up 3.056 1.959 1.165 0.677 0.729 0.611 

5. CONCLUSIONS 
In this study, a real-time quad-constellation GNSS PPP using the low-cost u-blox Z9D-F9P 
module was thoroughly assessed. The PPP solution was assessed in static and simulated-
kinematic modes under an open-sky environment and in an actual kinematic mode under a 
challenging environment. The IRKF was used as the estimation filter, and the measurements 
were processed in different modes, namely, real-time GPS + GLONASS PPP (GR–PPP), 
GPS + Galileo PPP (GE–PPP), GPS + GLONASS + Galileo PPP (GRE–PPP), 
GPS + GLONASS + BeiDou PPP (GRC–PPP), and GPS + GLONASS + Galileo + BeiDou 
PPP (GREC) modes. In the static mode, the accuracy of the GRE–PPP and GRC–PPP 
solutions was significantly improved compared with the GREC PPP solution. The GREC–
PPP accuracy was at the centimeter level in the north direction and at the decimeter level in 
both east and up directions. The GREC PPP further enhanced the solution convergence 
compared with the GRE–PPP and GRC–PPP counterparts. In the simulated-kinematic mode, 
the GREC–PPP showed the best convergence for all positioning components. Additionally, 
the positioning accuracy of both GRE–PPP and GRC–PPP solutions was improved from the 
decimeter and submeter levels in the horizontal and vertical components, respectively, to be at 
the decimeter level for the GREC–PPP solution. Under a challenging environment in which 
the satellite number was highly variable, the GRE–PPP improved the positioning accuracy 
and enhanced the solution convergence compared with the GR–PPP and GE–PPP 
counterparts. Moreover, the accuracy of the GR–PPP solution was improved from the meter 
level in the horizontal and vertical directions, respectively, to the decimeter and submeter 
levels for the GRE–PPP solution. Moreover, the GE–PPP’s accuracy was improved by 5%, 
38%, and 37% in the east, north, and up directions, respectively, compared with the GRE–
PPP. 
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