PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Badania aktywności katalizatorów opartych o tlenki Ni, Co oraz Ce w procesie w produkcji wodoru na drodze parowego reformingu etanolu (ESR)

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
The investigation of activity the bimetallic catalysts based on nicel oxide, cobalt oxide, cerium oxide in ethanol steam reforming (ESR)
Języki publikacji
PL
Abstrakty
PL
Przeprowadzono badania aktywności katalizatorów: Ni, Co, Ce osadzonych na Al203 do produkcji wodoru, na drodze parowego reformingu etanolu w zakresie temperatur 413-823 K. Katalizatory wytworzono metodą cytrynianową. Najlepszym spośród badanych katalizatorów okazał się katalizator niklowy, dla którego w 823 K selektywność w kierunku wodoru wynosi 79% przy wydajności wodoru 8531·h-l·kgkat-l.
EN
The studies of non-noble catalyst usage in a hydrogen production in the ethanol steam reforming process were performed. Nil Ah03, CoIAhO} and Cel Al203 were investigated in the temperature rage 413-823 K. The best Ni/Al203 catalyst achieved the highest hydrogen yield (above 850 l'h-I'kgkat-I) and H2 selectivity (about 80%) at 823 K.
Rocznik
Tom
Strony
99--117
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
Bibliografia
  • [1] Gonzalez-Gil R., Chamorro-Burgos L, Herrera c., Larrubia M.A, Laborde M., Marino F., Alemany L.J., 2015. Production of hydrogen by catalytic steam reforming of oxygenated model compounds on Ni-modified supported catalysts. Simulation and experimental study. Int. J. of Hydrogen Energ., 40, 11217-11227. DOI: 10.1 016/j .ijhydene.20 15.05.167.
  • [2] Sufang H., Zhanqiang M., Nengsheng L., Lei Z., Jichang L., Xiaofeng L., Jing W., Dedong H., Yongming L., 2017. Ni/SBA-15 catalysts for hydrogen production by ethanol steam reforming: Effect of nickei precursor. Int. J. Hydrogen Energ., 42, 14429-14438. DOI: 10.1 016/j.ijhydene.2017.02.115.
  • [3] Calles J.A., Carrero A., Vizcaino AJ., Lindo M., 2015. Effect of Ce and Zr Addition to Ni/Si02 Cata1ysts for Hydrogen Production through Ethanol Steam Reforming. Catalysts, 5, 58-76. DOI:10.3390/cataI5010058.
  • [4] Song J.H., Han S.J., Yoo J., Park S., Kim D.H., Song I.K., 2016. Hydrogen production by steam reforming of ethanol over Ni-Sr-A120rZr02 aerogel catalyst. J. Mo\. Cata\. A: Chem., 424,342-350. DOI: 10.1016/j.molcata.2016.09.013.
  • [5] Fatsikostas AN., Kondarides D.L, Verykios X.E., 2002. Production of hydrogen for fuel cells by reformation of biomass-derived ethano!. Cata!. Today, 75, 145-155. Dal: 10.1016/S0920-5861(02)00057-3.
  • [6] Shinoki T., Sono Y., Ota K., Funaki J., Hirata K., 2007. Hydrogen Production Using Ethanol-Steam-Reforming Reactor with Cu/ZnO/Ah03 and Ru/AI203 Catalysts. International Conference on Power Engineering, Hangzhou, China.
  • [7] Kumar A, Prasad R., Sharma Y.C., 2014. Steam Reforming of Ethanol: Production of Renewable Hydrogen. Int. J. Environ. Res. Development, 4, 203-212.
  • [8] Ni M., Leung D.Y.C., Leung M.K.H., 2007. A review on reforming bio-ethanol for hydro gen production. Int. J. Hydrogen Energ., 32, 3238-3247. DOI: 10.1016/j.ijhydene.2007.04.038.
  • [9] Hou T., Zhang S., Chen Y., Wang D., Cai W., 2015. Hydrogen production from ethanol reforming: Catalysts and reaction mechanism. Renew. Sust. Energ. Rev., 44, 132-148. DaT: 10.10 16/j.rser.20 14.12.023.
  • [10] Sengodan S., Lan R., Humphreys J., Du D., Xu W., Wang H., Tao S., 2018. Advances in reforming and partial oxidation of hydrocarbons for hydro gen production and fue1 celi applications. Renew. Sust. Energ. Rev., 82,761-780. DOI: 10.1016/j.rser.2017.09.071.
  • [11] Wu Ch., Dupont V., Nahil M.A, Dou B., Chen H., Williams P.T., 2017. Investigation of Ni/Si02 catalysts prepared at different conditions for hydrogen production frorn ethanol stearn reforming. J. Energy Inst.,90, 276-284. DOI: 10.1016/j.joei.20J6.01.002.
  • [12] Fajardo H.V., Longo E., Mezalira D., Nuemberg G., Almerindo G., Collasiol A., Probst L.D., Garcia 1.S., Carreno N .V., 20 l O. Influence of support on catalytic behaviour of nickel catalysts in the steam reforming of ethanol for hydrogen production. Environ. Chem. Lett., 8, 79-85. DOI 10.1007/s10311-008-0195-5.
  • [13] Freni S., Cavallaro S., Mondello N., Spadaro L., Frusteri F., 2003. Production of hydro gen for MC fuel cell by steam reforming of ethanol over MgO supported Ni and Co catalysts. Catal. Commun., 4, 259-268. DOI: 10.1016/S1566-7367(03)00051-7.
  • [14] Frusteri F., Freni S., Chi odo V., Spadaro L., Bonura G., Cavallaro S., 2004. Potassium improved stability of Ni/MgO in the steam reforming of ethanol for the production of hydrogen for MCFC. 1. Power Sources, 132, l39-144. DOI: 10.10 16/j.jpowsour.2003.12.032.
  • [15] Frusteri F., Freni S., Chiodo v., Spadaro L., Di Blasi O., Bonura G., Cavallaro S., 2004. Steam reforming of bio-ethanol on alkali-doped NiIMgO catalysts: hydrogen production for MC fuel cell. Appl. Catal. A: Gen., 270, 1-7. DOI: 10.1016/j.apcata.2004.03.052.
  • [16] Akande AJ., Idem R.O., Dalai A.K., 2005. Synthesis, characterization and performance evaluation ofNi/A1203 catalysts for reforming of crude etbanol for hydrogen production. Appl. Catal. A- Gen., 287,159-175. DOI: 10.1016/j.apcata.2005.03.046.
  • [17] Comas 1., Marino F., Laborde M., Amadeo N., 2004. Bio-ethanol steam reforming on Ni/AI203 catalyst. Chem. Eng. 1., 98, 61-68. DOI: 10.1016/S1385-8947(03)00186-4.
  • [18] Comas J., Dieuzeide M.L., Baronetti G., Laborde M., Amadeo N., 2006. Methane steam reforming and ethanol steam reforming using a Ni(II)-AI(III) catalyst prepared from lamellar double bydroxides. Chem. Eng. J., 118, 11-15. DOI: 10.1016/j.cej.2006.01.003.
  • [19] Yaakob Z., Bshish A., Ebshish A., Tasirin S. M., Alhasan F. H., 2013. Hydrogen production by steam reforming of ethanol over nickei catalysts supported on sol gel made alumina: influence of calcination temperature on supports. Materials, 6,2229-2239. DOI: 10.3390/ma6062229.
  • [20] Sun 1., Qiu X-P., Wu F., Zhu W-T., 2005. H2 from steam reforming of ethanol at low temperature over NilY203, Ni/La203 and Ni/AI203 catalysts for fuel-cell application. lnt. J.Hydrogen Energ., 30, 437-445. DOI: 10.1016/j.ijhydene.2004.11.005.
  • [21] Fajardo H.V., Probst L.F.D., Carreno N.L., Garcia I.T.S., Valentini A., 2007. Hydrogen Production from Ethanol Steam Reforming Over Ni/Ce02 Nanocomposite Catalysts. Catal. Lett., 119, 228-236. DOI: 10.l007/s l 0562-007-9222-6.
  • [22] Słowik G., Greluk M., Rotko M., Machocki A., 2018. Evolution of the structure ofunpromoted and potassium-promoted ceriasupported nickeI catalysts in the steam reforming of ethano!. Appl. Catal. B: Environ., 221, 490-509. DOI: 10.l016/j.apcatb.2017.09.052.
  • [23] Yang Y., Ma J., Wu F., 2006. Production of hydrogen by steam reforming of ethanol over a Ni/ZnO catalyst. Int. 1. Hydrogen Energ., 31, 877-882. DOI: 10.1016/j.ijhydene.2005.06.029.
  • [24] Mulewa W., Tahir M., Amin N.A.S., 2017. MMT-supported Ni/Ti02 nanocomposite for low ternperature ethanol steam reforming toward hydrogen production. Chem. Eng. J., 326, 956-969. DOl: 10.l016/j.cej.2017.06.012.
  • [25] Rossetti I., Lassoa J., Finocchio E., Ramis G., Nichelec V., Signorettoc M., Di Michele A., 2014. Ti02-supported catalysts for the steam reforming of etanol. Appl Catal A: Gen., 477, 42-53. DOI:10.10 16/j.apcata.2014.03.004.
  • [26] Bergamaschi V. S., Carvalho F.M.S., Rodrigeus C., Femandes D.B., 2005. Preparation and evaluation of zirconium microspheres as inorganic exchanger in adsorption of copper and nickei ions and as catalyst in hydrogen production frorn bioethanol. Chem. Eng. J, 112, 153-158. DOI: 10.10 16/j.cej .2005 .04.0 16.
  • [27] Sun J, Qiu X., Wu F., Zhu W., Wang W., Hao S., 2004. Hydrogen from steam reforming of ethanol in low and middle temperature range for fuel celI application. Int. l Hydrogen Energ., 29, 1075-1081. DOI: 10.1016/j.ijhydene.2003.11.004.
  • [28] Llorca J., Homs N., Sales J, de la Piscina P.R., 2002. Efficient production of hydrogen over supported Co catalysts from ethanol steam reforming. J. Catal., 209, 306-317. DOI: 10.1006/jcaL2002.3643.
  • [29] Llorca J., Horns N., Sales J., Fierro J.-L.G., de la Piscina P.R., 2004. Effect of sodium addition on the performance of Co-ZnO-based catalysts for hydrogen production from bioethanol. J. Catal., 222, 470-480. DOI: 10.1 016/j.jcat.2003.12.008 .
  • [30] Kwak B.S., Lee G., Park S.-M., Kang M., 2015. Effect of MnOx in the catalytic stabilization of C02Mn04 spinel during the ethanol steam reforming reaction. Appl. Catal. A: Gen., 503, 165-175. DOI: 10.10 I 6/j.apcata.20 15.06.037.
  • [31] Haga F., Nakajima T., Miya H., Mishima S., 1997. Catalytic properties of supported cobalt catalysts for steam reforming of ethanoJ. Cata!. Lett., 48, 223-227. DOl: 10.1 023/A: 101903940.
  • [32] Batista M.S., Santos R.K.S., Assaf E.M., Assaf J.M., Ticianelli E.A., 2004. High efficiency steam reforming of ethanol by cobalt-based catalysts. 1. Power Sources 134, 27-32. DOI: : 1 0.10 16/j .jpowsour.2004.0 1.052.
  • [33] Garcia S.R., Assaf J.M., 2012. Effect of the Preparation Method on Col Al203 Catalyst Applied to Ethanol Steam Reforming Reaction Production of Hydrogen. Modern Research Catal., l, 52-57. DOI: 10.4236/rnrc.2012.13007.
  • [34] Sahoo D.R., Vajpai S., Patel S., Pant K.K.,2007. Kinetic modeling ofsteam reforming ofethanol for the production of hydrogen over CoIAI203 catalyst. Che m. Eng. J., 125, 139-147. DOI: 10.1016/j.cej.2006.08.01l.
  • [35] Cavallaro S, Mondello N, Freni S., 200l. Hydrogen produced from ethanol for internal reforming molten carbonate fuel cell. J Power Sources, I 02: 198-204.
  • [36] de Lima S.M., Silva A.M., Graham U.M., Jacobs G., Davis B.H., Mattos L.V., Noronha F.B., 2009. Ethanol decomposition and steam reforming of ethanol over CeZr02 and Pt/CeZr02 catalyst: Reaction mechanism and deactivation. Appl. Catal. A: Gen., 352, 95-113. DOI: 10.1016/j.apcata.2008.09.040.
  • [37] Pinton N., Vidal M.V., Signoretto M., Martinez-Arias A., Cortćs Corberan V., 2017. Ethanol steam reforming on nanostructured catalysts of Ni, Co and Ce02: Influence of synthesis method on activity, deactivation and regenerability. Catal. Today, 296, 135-143. DOI: 10.10 16/j.cattod.20 17.06.022
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8f0e7fc6-9a7f-43a9-84e3-ac8a3d3f7db8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.