PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research of the possibility of removing organic pollutants from water by membrane methods and purification of the obtained concentrate by chemical methods

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Możliwości usuwania zanieczyszczeń organicznych z wody metodami membranowymi i oczyszczania otrzymanego koncentratu metodami chemicznymi
Języki publikacji
EN
Abstrakty
EN
Reverse osmosis (RO) and nanofiltration (NF) stand out for their versatility in terms of applicability to a wide range of contaminants, including personal care product (PCP) residues and endocrine disrupting chemicals (EDCs). The aim of the research was to analyse the efficiency of the removal of dosed PCPs and EDCs from model water with the use of RO and NF membranes. A study was also undertaken on the oxidation of the resulting concentrate after the membrane process - the efficiency of oxidation with ultraviolet-activated peracetic acid - UV/PAA system was analysed. Analysis of samples after each stage of the study showed that reverse osmosis was more effective in purifying water of EDCs than nanofiltration, while the UV/PAA oxidation system has a high potential for neutralising the concentrate formed after membrane processes, and points in the right direction for further in-depth research.
PL
Odwrócona osmoza (RO) i nanofiltracja (NF) wyróżniają się wszechstronnością pod względem możliwości zastosowania do szerokiego zakresu zanieczyszczeń, w tym pozostałości środków higieny osobistej (PCP) i związków endokrynnie czynnych (EDC). Celem badań była analiza skuteczności usuwania dozowanych PCP i EDC do wody modelowej przy użyciu membran RO i NF. Podjęto również badania nad utlenianiem powstałego koncentratu po procesie membranowym – analizowano skuteczność utleniania za pomocą aktywowanego promieniowaniem ultrafioletowym kwasu nadoctowego – układ UV/PAA. Analiza próbek po każdym etapie badań wykazała, że odwrócona osmoza była bardziej skuteczna w oczyszczaniu wody z EDC niż nanofiltracja, natomiast system utleniania UV/PAA ma duży potencjał do neutralizacji koncentratu powstałego po procesach membranowych i wskazuje właściwy kierunek dalszych pogłębionych badań.
Rocznik
Tom
Strony
art. no. 1105
Opis fizyczny
Bibliogr. 23 poz., tab., wykr.
Twórcy
  • Department of Technology in Enviromental Engineering, Bialystok University of Technology, Wiejska Street 45A, 15-351 Bialystok, Poland
  • Department of Technology in Enviromental Engineering, Bialystok University of Technology
  • Department of Analytical and Inorganic Chemistry, University of Bialystok
  • Faculty of Construction, Environmental Engineering and Architecture, Rzeszow University of Technology
  • Department of Silviculture and Forest Utilization, Bialystok University of Technology
Bibliografia
  • Acero, J. L., Benítez, F. J., Real, F. J., & Rodrı́guez, E. (2016). Influence of membrane, pH and water matrix properties on the retention of emerging contaminants by ultrafiltration and nanofiltration. Desalination and Water Treatment, 57(25), 11685-11698. http://dx.doi.org/10.1080/19443994.2015.1044919
  • Ali, Z., & Qaisrani, T. M. (2024). Nanofiltration (NF) and reverse-osmosis (RO) membranes for aqueous ammonium nitrate salt rejection: Experimental Studies. Materials Proceedings, 17(1), 20. https://doi.org/10.3390/materproc2024017020
  • Aziz, S., Mazhar, A. R., Ubaid, A., Shah, S. M. H., Riaz, Y., Talha, T., & Jung, D.-W. (2024). A comprehensive review of membrane-based water filtration techniques. Applied Water Science, 14, 169. http://dx.doi.org/10.1007/s13201-024-02226-y
  • Balata, G., Mahdi, M., & Bakera, R. A. (2011). Improvement of solubility and dissolution properties of clotrimazole by solid dispersions and inclusion complexes. Indian Journal of Pharmaceutical Sciences, 73(5), 517-526. https://pubmed.ncbi.nlm.nih.gov/22923864/
  • Barbier, E. B., & Burgess, J. C. (2024). Economics of Water Scarcity and Efficiency. Sustainability, 16(19), 8550. http://dx.doi.org/10.3390/su16198550
  • Belhout, D., Tigrine, Z., Mosnegutu, E. F., & Benabdelaziz, F. K. (2022). Management of reverse osmosis concentrate by solar distillation. Water Supply, 22(8), 6490-6503. https://doi.org/10.2166/ws.2022.269
  • Chemical Book. (2024, November 10). https://www.chemicalbook.com
  • Cumming, H., & Rücker, C. (2017). Octanol−Water Partition Coefficient Measurement by a Simple 1H NMR Method. ACS Omega, 2(9), 6244-6249. https://doi.org/10.1021/acsomega.7b01102
  • DrugBank. (2024, November 10). https://go.drugbank.com
  • Farhat, S., Kamel, F., Jedoui, Y., & Kallel, M. (2012). The relation between the RO fouling membrane and the feed water quality and the pretreatment in Djerba Island plant. Desalination, 286, 412-416. https://doi.org/10.1016/j.desal.2011.11.058
  • Hidalgo, A. M., León, G., Murcia, M. D., Gómez, M., Gómez, E., & Gómez, J. L. (2021). Using Pressure-Driven Membrane Processes to Remove Emerging Pollutants from Aqueous Solutions. International Journal of Environmental Research and Public Health, 18(8), 4036. https://doi.org/10.3390/ijerph18084036
  • Krzeminski, P., Schwermer, C., Wennberg, A., Langford, K., & Vogelsang, C. (2017). Occurrence of UV filters, fragrances and organophosphate flame retardants in municipal WWTP effluents and their removal during membrane post-treatment. Journal of Hazardous Materials, 323(A), 166-176. https://doi.org/10.1016/j.jhazmat.2016.08.001
  • López-Serrano, M. J., Lakho, F. H., Van Hulle, S. W. H., & Batlles-de la Fuente, A. (2023). Life cycle cost assessment and economic analysis of a decentralized wastewater treat-ment to achieve water sustainability within the framework of circular economy. Oeconomia Copernicana, 14(1), 103-133. http://dx.doi.org/10.24136/oc.2023.003
  • Mangalgiri, L., Cheng, Z., Cervantes, S., Spencer, S., & Liu, H. (2021). UV-based advanced oxidation of dissolved organic matter in reverse osmosis concentrate from a potable water reuse facility: A Parallel-Factor (PARAFAC) analysis approach. Water Research, 204, 117585. https://doi.org/10.1016/j.watres.2021.117585
  • Monachan, M., Dixit, N., Maliyekkal, S. M., & Singh, S. P. (2021). Reverse Osmosis (RO) and Nanofiltration (NF) Membranes for Emerging Contaminants (ECs) Removal. In S.P. Singh, A.K. Agarwal, T. Gupta & S.M. Maliyekkal (Eds.), New Trends in Emerging Environmental Contaminants. Energy, Environment and Sustainability (pp. 407-425). Singapore: Springer.
  • National Library of Medicine. National Center for Biotechnology Information. (2024, November 10). https://pubchem.ncbi.nlm.nih.gov
  • Nowak, R., & Włodarczyk-Makuła, M. (2020). Treatment and utilization of the concentrate from membrane separation processes of landfill leachates. Civil and Environmental Engineering Reports, 30(2), 92-104.
  • https://www.researchgate.net/publication/343964396_Treatment_and_Utilization_of_the_Concentrate_from_Membrane_Separation_Processes_of_Landfill_Leachates
  • Othman, N. H., Alias, N. H., Fuzil, N. S., Marpani, F., Shahruddin, M. Z., Chew, Ch. M., David Ng, K. M., Lau, W. J., & Ismail, A. F. (2021). A Review on the Use of Membrane Technology Systems in Developing Countries. Membranes, 12(1), 30. https://doi.org/10.3390/membranes12010030
  • Russ, J., Zaveri, E., Desbureaux, S., Damania, R., & Rodella, A.-S. (2022). The impact of water quality on GDP growth: Evidence from around the world. Water Security, 17, 100130. https://doi.org/10.1016/j.wasec.2022.100130
  • Scholes, R. C., Stiegler, A. N., Anderson, C. M., & Sedlak, D. L. (2021). Enabling Water Reuse by Treatment of Reverse Osmosis Concentrate: The Promise of Constructed Wetlands. ACS Environmental, 1(1), 7-17. https://doi.org/10.1021/acsenvironau.1c00013
  • Shaban, M., Morsy, A., Mahmoud, A. S., & Abdel-Hamid, H. (2024). Membrane Separation Processes: Principles, Structures, Materials, and Future Prospects. In H. Xu, X. Gu, Y. Qiu, H. Wang & Y. Sun (Eds.), Advances in Desalination Insights (Chapter 4, pp. 58-64). IntechOpen. https://www.intechopen.com/chapters/1192658
  • Zhu, T., & Liu, B. (2022). Mechanism study on the effect of peracetic acid (PAA), UV/PAA and ultrasonic/PAA oxidation on ultrafiltration performance during algae-laden water treatment. Water Research, 220, 118705. https://doi.org/10.1016/j.watres.2022.118705
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8f0df9d2-ef33-41b8-9b9b-f7a33593e459
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.