PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wear resistance of hydrogenated high nitrogen steel at dry and solid state lubricants assistant friction

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: This paper is devoted the investigation hydrogen influence on of wear resistance of high nitrogen steel (HNS) at dry and solid state lubricants assistant friction. It has been established that after hydrogenation at 250 N loading the wear rate increased by 2.9 ... 4.1 times. Microhardness of hydrogenated layer was 7.6 ... 8.2 GPa, that is increased after hydrogenation in two times. After adding the (GaSe)xIn1-x compounds to the tribo conjugates by X-ray diffraction analysis it has been established the appearance of new phases which formed during the friction process and detected on the friction surface. Design/methodology/approach: This work presents research results concerning the comparative tests of high nitrogen steels in the circumstances of dry rolling friction. It was conducted the experiments to determine the tribological properties of high-nitrogen steels under rolling friction. The test pieces were manufactured in the form of rollers, and rotated with a linear velocity 2.27 m/s (upper roller), 3.08 m/s (bottom roller). Upper roller is made from HNS was subjected for hydrogenation. Analysis of friction surfaces indicates the complex mechanism of fracture surfaces. The results of the local X-ray analysis and X-ray diffraction analysis has been established the appearance of new phases and elements on the friction surface. Findings: It has been found that the level of wear resistance of the investigated materials under hydrogenation. Compounds realize chemisorption, tribochemical mechanisms of the formation of thin protective (anti-wear, antifriction) layers on metal surfaces. Research limitations/implications: An essential problem is the verification of the results obtained using the standard mechanical tests, computer-based image analysis and other methods. Practical implications: The observed phenomena can be regarded as the basic explanation of reduces the plasticity characteristics after hydrogenation. Applying the (GaSe)xIn1-x compounds as a lubricant will allow the formation of films on friction surfaces that can minimize surface wear, which will contribute to the transition to a wear-free friction mode. The protective film is a barrier to high shear and normal loads, preserving the base metal of the part and providing reduced wear and friction. Originality/value: The value of this work is that conducted experiments permit to determine the tribological properties of high nitrogen steels under rolling friction after hydrogenation. After adding (GaSe)xIn1-x compounds to the tribo conjugates after due to X-ray diffraction analysis it has been established the appearance of new phases which formed during the friction process and detected on the friction surface.
Rocznik
Strony
57--67
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
  • Ivan Franko National University of Lviv, 50 Drahomanova str., 79005, Lviv, Ukraine
  • Karpenko Physico-Mechanical Institute National Academy of Sciences of Ukraine, 5 Naukova str., 79060, Lviv, Ukraine
  • Taras Shevchenko National University of Lugansk, 1 Gogol Sq., 92703, Starobilsk, Ukraine
  • Karpenko Physico-Mechanical Institute National Academy of Sciences of Ukraine, 5 Naukova str., 79060, Lviv, Ukraine
  • West Pomeranian University of Technology in Szczecin, 19 Piastow av., 70-310, Szczecin, Poland
Bibliografia
  • [1] F.O. Nestle, H. Speidel, M.O. Speidel, High nickel release from 1- and 2-euro coins, Nature 419 (2002) 132, DOI: https://doi.org/10.1038/419132a.
  • [2] M.O. Speidel, From High-Nitrogen Steels (HNS) to High-Interstitial Alloys (HIA), in: M.O. Speidel (Ed.), HNS 2003: High Nitrogen Steels, Hochschulverlag AG an der ETH Zurich,2003, 1-8.
  • [3] A.I. Balitskii, O.V. Machnenko, O.A. Balitskii, V.A. Grabovskii, D.M. Zaverbnii, B.T. Timofeev, Fracture mechanics and strength of materials: Reference book, V.V. Panasyuk (Editor-in-chief), V.8. Strength of materials and durability of structural elements of nuclear power plants, A.I. Balitskii (Ed.), PH “Akademperiodyka”, Kyiv, 2005, 544.
  • [4] P.J. Uggowitzer, R. Magdowski, M.O. Speidel, High nitrogen austenitic stainless steels - properties and new developments, La Metallurgia Italiana 86/6-7 (1994) 347-354.
  • [5] J. Romu, J. Tervo, H. Hannien, J. Liimatainen, Wear resistance of high nitrogen austenitic stainless steels manufactured by molten and powder metallurgy routes, Proceedings of the 3rd International Conference High nitrogen steels “HNS 93”, Kiev, Ukraine, 1993, 372-378.
  • [6] R. Buscher, A. Fischer, Tribological performance of austenitic high-nitrogen steels for biomedical applications, Steel Grips, High Nitrogen Steels 2 (2004) 481-491.
  • [7] N. Efros, L. Korshunov, B. Efros, N. Chernenko, L. Loladze, Nanostructure and tribological properties of nitrogen-containing Fe-Mn-Cr alloys upon friction and abrasive action, Steel Grips, High Nitrogen Steels 2 (2004) 391-395.
  • [8] M. Diener, Application of High Nitrogen Steels for Rail Wheels, Proceedings of the 2nd International Conference of High Nitrogen Steels, Aahen, Germany, 1990, 405-410.
  • [9] O.I. Balyts’kyi, V.O. Kolesnikov, P. Kawiak, Tribo- engineering properties of austenitic manganese steels and cast-irons under the conditions of sliding friction, Materials Science 41/5 (2005) 624-630, DOI: https://doi.org/10.1007/sl 1003-006-0023-7.
  • [10] U.I. Thomann, P.J. Uggowitzer, Wear-corrosion behaviour of biocompatible austenitic stainless steels, Wear 239/1 (2000) 48-58, DOI: https://doi.org/ 10.1016/S0043-1648(99)00372-5.
  • [11] I. Dmytrakh, Corrosion fracture of structural metallic materials, Effect of electrochemical conditions in crack, Strain: An International Journal for Experimental Mechanics 47/2 (2011) 427-435, DOI: https://doi.org/10.111 l/j,1475-1305.2010.00784.x.
  • [12] T. Michler, J. Naumann, Hydrogen environment embrittlement of austenitic stainless steels at low temperatures, International Journal of Hydrogen Energy 33/8 (2008) 2111-2122, DOI: https://doi.org/ 10.1016/j.ijhydene.2008.02.021.
  • [13] T. Michler, J. Naumann, Hydrogen environment of Cr-Mn-N-austenitic stainless steels, International Journal of Hydrogen Energy 35/3 (2010) 1485-1492, DOI: https://doi.Org/10.1016/j.ijhydene.2009.10.050.
  • [14] O.I. Balyts’kyi, L.M Ivaskevich, V.M. Mochulskyi, O.M. Holiyan, Influence of hydrogen on the crack resistance of 10Khl5N27T3V2MR steel, Materials Science 45/2 (2009) 258-267, DOI: https://doi.org/ 10.1007/sl 1003-009-9184-5.
  • [15] A.I. Balitskii, L.M. Ivaskevich, V.M. Mochulskyi, Crack resistance of age-hardening Fe-Ni alloys in gaseous hydrogen, Proceedings of the 18th European Conference on Fracture, Fracture of Materials and Structures from Micro to Macro Scale, Dresden, Germany, 2010, Paper N 80, 1-8.
  • [16] T. Michler, J. Naumann, E. Sattler, Influence of high pressure gaseous hydrogen on S-N fatigue in two austenitic stainless steels, International Journal of Fatigue 51 (2013) 1-7, DOI: https://doi.org/10.1016/ j.ijfatigue.2013.01.010.
  • [17] T. Michler, J. Naumann, M.P. Balogh, Hygrogen environment embrittlement of solution treated Fe-Cr-Ni, Materials Science and Engineering: A 607 (2014) 71-80, DOI: https://doi.Org/10.1016/j.msea.2014.03.134.
  • [18] T. Michler, J. Naumann, Microstructural aspects upon hydrogen environment embrittlement of various bcc steels, International Journal of Hydrogen Energy 35/2 (2010) 821-832, DOI: https://doi.org/10.1016/ j.ijhydene.2009.10.092.
  • [19] T. Michler, M. Linder, U. Eberle, J. Meusinger, Assessing hydrogen embrittlement in automotive hydrogen tanks, in: R.P. Gangloff, B.P. Somerday (Eds.), Gaseous Hydrogen Embrittlement of Materials in Energy Technologies. The Problem, its Charac¬terisation and Effects on Particular Alloy Classes, Woodhead Publishing Limited, 2012, 94-125, DOI: https://doi.Org/10.1533/9780857093899.l.94.
  • [20] A.A. Balitskii, V.A. Kolesnikov, O.B. Vus, Tribo- technical properties of nitrogen manganese steels under rolling friction at addition of (GaSe)xIn!_x powders into contact zone, Metallofizika i Noveishie Tekhnologii 32/5 (2010) 685-695.
  • [21] K.H. Hu, J. Wang, S. Scharaube, Y.F. Xu, X.G. Hu, R. Stengler, Tribological properties of MoS2 nano¬balls as filler in polyoxymethylene-based composite layer of three-layer self-lubrication bearing materials, Wear 266/11-12 (2009) 1198-1207, DOI: https://doi.org/ 10.1016/j.wear.2009.03.036.
  • [22] R. Tenne, L. Margulis, M. Genut, G. Hodes, Polyhedral and cylindrical structures of tungsten disulphide, Nature 360 (1992) 444-446, DOI: https://doi.org/10.1038/360444a0.
  • [23] V. Pettarrin, M.J. Churruca, D. Felhos, J. Karger- Kocsis, P.M. Frontini, Changes in tribological performance of high molecular weight high density polyethylene induced by the addition of molybdenum disulphide particles, Wear 269/1-2 (2010) 31-45, DOI: https://doi.Org/10.1016/j.wear.2010.03.006.
  • [24] A. Adebogun, R. Hudson, A. Breakspear, C. Warrens, A. Gholinia, A. Mattehews, P. Withers, Industrial Gear Oils: Tribological Performance and Subsurface Changes, Tribology Letters 66:65 (2018) 1-13, DOI: https://doi.org/10.1007/sll249-018-1013-2.
  • [25] D. Klammann, Lubricants and related products (Synthesis properties applications international standards), Verlag Chemie GmbH, D-6940 Weinheim, 1984, 488.
  • [26] S. Bistac, A. Galliano, Nano and macro tribology of elastomers, Tribology Letters 18/1 (2005) 21-25, DOI: https://doi.org/10.1007/sll249-004-1701-y.
  • [27] L. Rapoport, Yu. Bilik, Y. Feldman, M. Homyofer, S.R. Cohen, R. Tenne, Hollow nanoparticles of WS2 as potential solid-state lubricants, Nature 387 (1997) 791-793, DOI: https://doi.org/10.1038/42910.
  • [28] A.I. Balitskii, V.V. Panasyuk, Workability assessment of structural steels of power plant units in hydrogen environments, Strength of Materials 41/1 (2009) 52¬57, DOI: https://doi.org/10.1007/sll223-009-9097-4.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8f0b5c68-02e5-4f9b-883b-077d808761b1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.