PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Terahertz response of CdTe/Cd1-xMgxTe modulation-doped multiple quantum wells

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Free Electrons Laser Applications in Infrared and THz Studies of New States of Matter - TERFEL : International Conference 2022 (5–8 July, 2022 ; Warszawa, Poland)
Języki publikacji
EN
Abstrakty
EN
Terahertz (THz) transmission, photoresistance, and electrical conductivity experiments were carried out at 4.2 K on a sample with modulation-doped CdTe/Cd₁₋ₓMgₓTe multiple quantum wells. The measurements were carried out as a function of a magnetic field 𝐵 up to 9 T and a radiation frequency between 0.1 and 0.66 THz. A broad minimum in the transmission curve was observed at magnetic fields corresponding to the cyclotron resonance at given THz frequency which was followed at larger fields by an oscillatory signal, periodic in 𝐵ˉ¹. Shubnikov-de Haas oscillations were observed in magnetoconductivity and in photoresistance. Each of these experimental signals revealed the same electron concentration equal to (1.01 ± 0.03) ∙10¹² cmˉ². THz spectroscopy results are compared with data obtained on a single quantum well and are discussed from the point of view of using such multiple quantum wells as THz optical elements.
Twórcy
  • Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
  • CENTERA Laboratories, Institute of High-Pressure Physics, Polish Academy of Sciences, Sokołowska 29, 01-142 Warsaw, Poland
  • Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
  • Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
autor
  • Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
  • Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
  • Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
  • Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
  • Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
  • Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
  • Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
  • International Research Centre Mag Top, Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland
  • Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland
  • International Research Centre Mag Top, Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland
  • Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland
  • International Research Centre Mag Top, Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland
Bibliografia
  • [1] Cheng, J.-P., McCombe, B. D. & Brozak, D. Impurity-bound magnetopolarons in confined structures. Surf. Sci. 267, 488 (1992). https://doi.org/10.1016/0039-6028(92)91183-C.
  • [2] Cheng, J.-P., McCombe, B. D., Brozak, G. & Schaff, W. Resonant electron - optical phonon interactions for impurities in GaAs and GaAs/AlxGa1-x As quantum wells and superlattices. Phys. Rev. B 48, 17243 (1993). https://doi.org/10.1103/PhysRevB.48.17243.
  • [3] Ashkinadze, B. M., Cohen, E., Ron, A. & Pfeiffer, L. Microwave modulation of exciton luminescence in GaAs/AlxGa1-xAs quantum wells. Phys. Rev. B 47, 10613-10618 (1993). https://doi.org/10.1103/physrevb.47.10613.
  • [4] Ryu, S. R., Jiang, Z. X., Li, W. J., McCombe, B. D. & Schaff, W. Observation of D-triplet transitions in GaAs/AlxGa1-xAs multiple quantum wells. Phys. Rev. B 54, R11086 (1996). https://doi.org/10.1103/PhysRevB.54.R11086.
  • [5] Celik, H., Cankurtaran, M., Bayrakli, A., Tiras, E. & Balkan, N. Well-width dependence of the in-plane effective mass and quantum lifetime of electrons in GaAs/AlxGa1-xAs multiple quantum wells. Semicond. Sci. Technol. 12, 389-395 (1997). https://yunus.hacettepe.edu.tr/~hucelik/PDF/10.pdf.
  • [6] Heron, R. J. et al. Far-infrared laser photoconductivity of n-GaAs multiple quantum wells in a pulsed magnetic field. Physica B 246-247, 290-293 (1998). https://doi.org/10.1016/S0921-4526(97)00918-6.
  • [7] Kozhevnikov, M., Cohen, E., Ron, A. & Shtrikman, H. Electron and hole microwave cyclotron resonance in photoexcited undoped GaAs/AlxGa1-xAs multiple quantum wells. Phys. Rev. B 60, 16885 (1999).
  • [8] Kim S.-W. et al. Optical properties of magnetoplasmons in multiple quantum wells. Physica B Condens Matter. 322, 12–23 (2002). https://doi.org/10.1016/S0921-4526(02)00591-4.
  • [9] Zybert, M. et al. Landau levels and shallow donor states in GaAs/AlGaAs multiple quantum wells at megagauss magnetic fields. Phys. Rev. B 95, 115432 (2017). https://doi.org/10.1103/PhysRevB.95.115432.
  • [10] Grigelionis, I. et al. Terahertz magneto-spectroscopy of a point contact based on CdTe/CdMgTe quantum well. Proc. SPIE 9199, 91990G (2014). https://doi.org/10.1117/12.2061938.
  • [11] Grigelionis, I. et al. Magnetoplasmons in high electron mobility CdTe/CdMgTe quantum wells. Phys. Rev. B 91, 075424 (2015). https://doi.org/10.1103/PhysRevB.91.075424.
  • [12] Yavorskiy, D. et al. Grating metamaterials based on CdTe/CdMgTe quantum wells as terahertz detectors for high magnetic field applications. Appl. Sci. 10, 2807 (2020). https://doi.org/10.3390/app10082807.
  • [13] Yavorskiy, D. et al. Polarization of magnetoplasmons in grating metamaterials based on CdTe/CdMgTe quantum wells. Materials 13, 1811 (2020). https://doi.org/10.3390/ma13081811.
  • [14] Rungsawang, R. et al. Terahertz radiation from magnetic excitations in diluted magnetic semiconductors. Phys. Rev. Lett. 110, 177203 (2013). https://doi.org/10.1103/PhysRevLett.110.177203.
  • [15] Łusakowski, J. et al. Magnetospectroscopy of CdTe/Cd1-xMgxTe modulation-doped quantum wells in THz and visible range. Opto-Electron. Rev. (accepted).
  • [16] Li, G., Babiński, A. & Jagadish, C. Subband electron densities of Si δ – doped pesudomorphic In0.2Ga0.8 As/GaAs heterostructures. Appl. Phys. Lett. 70, 3582 (1997). https://www.fuw.edu.pl/~babinski/Publications/apl703582.pdf.
  • [17] Babiński, A., Li, G. & Jagadish, C. The persistent photoconductivity effect in modulation Si δ-doped pseudomorphic In0.2Ga0.8 As/GaAs quantum well structure. Appl. Phys. Lett. 71, 1664 (1997). https://doi.org/10.1063/1.119788.
  • [18] Wasik, D. et al. Parasitic conduction phenomena in modulation doped CdTe/CdMgTe:I heterostructures grown on GaAs substrates. J. Appl. Phys. 91, 753 (2002). https://doi.org/10.1063/1.1426233.
  • [19] Wasik, D. et al. Elimination of parallel transport in modulation-doped CdTe/CdMgTe:I heterostructures. Phys. Status Solidi B Basic Res. 229, 183 (2002). https://doi.org/10.1002/1521-3951(200201) 229:1<183::AID-PSSB183>3.0.CO;2-O.
  • [20] Łusakowski, J. & Łusakowski, A. Magnetoconductivity and potential fluctuations in semi-insulating GaAs. J. Phys. Condens. Matter. 16, 2661 (2004). https://doi.org/10.1088/0953-8984/16/15/017.
  • [21] Davies, J. H. The Physics of Low-Dimensional Semiconductors. An Introduction. Chapter 6 (Cambridge University Press, 1998).
  • [22] Nag, B. R. Electron Transport in Compound Semiconductors. Chapter 10 (Verlag Berlin, Heidelberg, New York, 1980).
  • [23] Cao, H. et al. Quantized Hall effect and Shubnikov-de Haas oscillations in highly doped Bi2Se3: Evidence for layered transport of bulk carriers. Phys. Rev. Lett. 108, 216803 (2012). https://doi.org/10.1103/PhysRevLett.108.216803.
  • [24] Skierbiszewski, C. et al. High mobility two-dimensional electron gas in AlGaN/GaN heterostructures grown on bulk GaN by plasma assisted molecular beam epitaxy. Appl. Phys. Lett. 86, 102106 (2005). https://doi.org/10.1063/1.1873056.
  • [25] Dyakonov, M. I., Efros, A. L. & Mitchell, D. L. Magnetic freeze-out of electrons in extrinsic semiconductors. Phys. Rev. 180, 813 (1969). https://doi.org/10.1103/PhysRev.180.813.
  • [26] Wu, C. C., Tsai, J. & Lin, C. J. Free-carrier absorption in n-type gallium - arsenide in quantizing magnetic fields. Phys. Rev. B 43, 7328 (1991). https://doi.org/10.1103/PhysRevB.43.7328.
Uwagi
1. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
2. This research was partially supported by the Polish National Science Centre grant UMO-2019/33/B/ST7/02858 and by the Foundation for Polish Science through the IRA Programme co-financed by EU within SG OP (Grant No. MAB/2017/1).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8f0ab39e-96d8-4664-af64-555b15a8a64c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.