PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Working parts for intensive crushing and grinding of feed from waste raw materials: A review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Processing of waste into feed involves the need to grind it. Therefore, the study of research on this problem is relevant. The study aims to summarize scientific data on developing working parts for grinding feed from waste. In this regard, we analyzed scientific publications. As a result, it was revealed that the trend in grinding feed raw materials is the use of all types of food production and agricultural waste. Ten types of plant waste from the food industry and seven types of animal waste are indicated. It was found that the main working parts for grinding feed are technical devices for cutting, impact, abrasive-crushing, splitting-breaking, and impact-cutting action. It was revealed that an evident trend is improving working parts for intensive grinding based on optimal design developments of working parts, increasing the efficiency of working surfaces and design and technological parameters, and combining several methods of destroying feed raw materials using one type of working part. In general, the disadvantages and advantages of saws (4 types), rollers and disks (7 types), hammers and knives (21 types), and shredder disk knives (4 types) are analyzed and summarized in tables.
Twórcy
  • Technical Faculty, S.Seifullin Kazakh Agrotechnical Research University, Zhenis 62, 010000 Astana, Kazakhstan
  • Technical Faculty, S.Seifullin Kazakh Agrotechnical Research University, Zhenis 62, 010000 Astana, Kazakhstan
autor
  • Department of Manufacturing Systems, Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, A. Mickiewicza 30, 30-059 Krakow, Poland
  • Technical Faculty, S.Seifullin Kazakh Agrotechnical Research University, Zhenis 62, 010000 Astana, Kazakhstan
  • Department of Manufacturing Systems, Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, A. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • 1. Zuev, Y.F., Derkach, S.R., Bogdanova, L.R., Voron’ko, N.G., Kuchina, Y.A., Gubaidullin, A.T., Lunev, I.V., Gnezdilov, O.I., Sedov, I.A., Larionov, R.A., Latypova, L., Zueva, O.S. Underused marine resources: Sudden properties of cod skin gelatin gel. Gels 2023, 9, 990. https://doi.org/10.3390/gels9120990.
  • 2. Bychkova, E., Rozhdestvenskaya, L., Podgorbunskikh, E., Kudachyova, P. The Problems and prospects of developing food products from high-protein raw materials. Food Bioscience 2023, 56, 103286.
  • 3. Racz, A., Csoke, B. Comminution of single real waste particles in a swing-hammer shredder and axial gap rotary shear. Powder Technology 2021, 390, 182–189. https://doi.org/10.1016/j.powtec.2021.05.064.
  • 4. Zhang, Y.N., Chen, F.P., Zhang, Y.N., Zhang, Y.X., Du, X.Z. Experimental investigations of interactions between a laser-induced cavitation bubble and a spherical particle. Experimental Thermal & Fluid Science 2018, 98, 645–661.
  • 5. Wahab, R.A., Leman, A.M., Rahim, A.M.A., Muzarpar, S. Staging blade arrangement of vertical crusher machine for producing an optimum size for animal feed production. Green Design and Manufacture: Advanced and Emerging Applications 2018, 2030, 020087. https://doi.org/10.1063/1.5066728.
  • 6. Thomas, M., Hendriks, W.H., van der Poel, A.F.B. Size distribution analysis of wheat, maize and soybeans and energy efficiency using different methods for coarse grinding. Animal Feed Science and Technology 2018, 240, 11–21. https://doi.org/10.1016/j.anifeedsci.2018.03.010.
  • 7. Iskakov, R., Issenov, S., Kubentaeva, G. Impact elements of feed grinder: a Review. Eureka: Physics and Engineering 2023, 2, 121–148. https://doi.org/10.21303/2461-4262.2023.002820.
  • 8. Sekatskii, V.S., Merslikina, N.V., Pikalov, Y.A., Morgun, V.N. Conformity assessment of information on crushing equipment for agricultural raw materials: Consequences of the lack of appropriate standards. International Workshop Advanced Technologies in Material Science, Mechanical and Automation Engineering - MIP: Engineering 2019, 537. https://doi.org/10.1088/1757-899X/537/3/032018.
  • 9. Bembenek, M., Wdaniec, P. Effect of crusher type and its parameters on the dry granulation of powders. Przemysl Chemiczny 2019, 98, 2, 310–313. https://doi.org/10.15199/62.2019.2.25.
  • 10. Lasch, T., Mhof, J., Sarc, R., Khodier, L. Development of a method for shredder characterisation and dynamic control of the output material stream. Journal of Sustainable Development of Energy Water and Environment Systems 2024, 12(3), 1120492. https://doi.org/10.13044/j.sdewes.d12.0492.
  • 11. Yang, C., Yu, S., Ren, C. Design of large branches grinder based on the using of China’s biomass power generation. Mechanical Engineering and Materials 2012, PTS 1–3, 152–154, 1298–1302. https://doi.org/10.4028/www.scientific.net/AMM.152-154.1298.
  • 12. Iskakov, R.М., Issenov, S.S., Iskakova, A.M., Halam, S. and Beisebekova, D.M. Microbiological appraisal of feed meal of animal origin, produced by drying and grinding installation. Journal of Pure and Applied Microbiology 2015, 9(1), 587–592.
  • 13. Iskakov, R.М., Issenov, S.S., Iskakova, A.M., Halam, S. and Beisebekova, D.M. Heat-and-moisture transfer at the feed meal particles drying and grinding. Life Science Journal 2013, 10(12s), 497–502.
  • 14. Moiceanu, G., Paraschiv, G., Voicu, G., Dinca, M., Negoita, O., Chitoiu, M. Energy consumption at size reduction of lignocellulose biomass for bioenergy. Sustainability 2019, 11, 9. https://doi.org/10.3390/su11092477.
  • 15. Zhai, Z., Yuan, D., Lan, Y., Zhao, H. Reliability analysis and optimization of the hammer rotor of forage crusher under multiple failure modes 2023, 37, 10, 5103–5115. https://doi.org/10.1007/s12206-023-0915-6.
  • 16. Nagaiko, I.A., Gulyarenko, A.A. Comparison of plasma surface hardening with vibratory arc deposition. Steel Transl. 2023, 53, 800–804. https://doi.org/10.3103/S0967091223090097.
  • 17. Gulyarenko, A.A., Smakovskiy, M.S., Lobov, V.A., Remshev, E.Y., Frolova, E.O. Manufacture of lightweight stamped ball plugs with surface hardening. Russian Engineering Research 2023, 43, 60–64. https://doi.org/10.3103/S1068798X23020144.
  • 18. Volvak, S., Pastukhov, A., Bakharev, D., Dobrickiy, A. Theoretical Studies of Technological Process of Grinding Stalked Feed. 20-th International Scientific Conference Engineering for Rural Development 2021, 831–836. https://doi.org/10.22616/ERDev.2021.20.TF189.
  • 19. Sugirbay, A., Hu, G.-R., Chen, J., Mustafin, Z., Muratkhan, M., Iskakov, R., Chen, Y., Zhang, S., Bu, L., Dulatbay, Y., et al. A study on the calibration of wheat seed interaction properties based on the discrete element method. Agriculture 2022, 12, 1497. https://doi.org/10.3390/agriculture12091497.
  • 20. Sugirbay, A., Zhao, K., Liu, G., Hu, G., Chen, J., Mustafin, Z., Iskakov, R., Kakabayev, N., Muratkhan, M., Khan, V., et al. Double disc colter for a zero-till seeder simultaneously applying granular fertilizers and wheat seeds. Agriculture 2023, 13, 1102. https://doi.org/10.3390/agriculture13051102.
  • 21. Sinnott, M.D., Cleary, P.W. Simulation of particle flows and breakage in crushers using DEM: Part 2-Impact crushers. Minerals Engineering 2015, 74, 163–177. https://doi.org/10.1016/j.mineng.2014.11.017.
  • 22. Bozkurt, M., Koçer, B., Ege, G., Tüzün, A.E., Biyik, H.H., Poyrazoglu, E. Influence of the particle size and form of feed on growth performance, digestive tract traits and nutrient digestibility of white egg-laying pullets from 1 to 112 D of age. Poultry Science 2019, 98, 9, 4016–4029. https://doi.org/10.3382/ps/pez144.
  • 23. Vasilevskaya, S.P. Development and justification of methods for utilization of plant waste from fermentation industries: diss. Cand. of Technical Sciences: 05.18.12 Orenburg, 2006. (In Russian).
  • 24. Becker, D. Sugar Production from Sugar Cane. Translation from German. Moscow: Pishchepromizdat, 1960. (In Russian).
  • 25. Anchabadze, N., Sautin, V. Rationalization of Processing of Pomace. Winemaking and viticulture of the USSR 1955, 6. (In Russian).
  • 26. Kichigin, V.P. Using sunflower husks as cattle feed. Oil and fat industry 1958, 12. (In Russian).
  • 27. Lesnov, A.P. LLC NPO «Agrokorminvest». Technology of Processing Plant Waste and Food Production Waste Into Feed and Feed Additives. http://www.waste.ru/modules/section/item.php?itemid=196 (date of access: 18.07.2024). (In Russian).
  • 28. Vasilinetz, I.M. Fundamentals of technologies of food products from raw materials of plant origin. Text of lectures. St. Petersburg, 1999. (In Russian).
  • 29. Domoroshchenkova M. Report by the Head of the Department of Plant Protein Production and Biotechnology, Read at the 6th International Conference “Compound Feed 2012” on February 7, 2012. Oil cakes and meals as the most important source of feed protein. http://www.myaso-portal.ru/news/analytics/zhmykhi-i-shroty-maslichnykh-kak-vazhneyshiy-istochnik-kormovogo-belka (date of access: 02.06.2024). (In Russian).
  • 30. Chen, L.D., Yang, X.W., Chen, W., Yang, X.W. Effects of water-fertilizer coupling with straw returning on yield and quality of rice. Journal of Drainage and Irrigation Machinery Engineering 2018, 36: 1152–1156. (In Chinese).
  • 31. Sameera, V.S., Rao, A.V.R., Srividya, R., Boppena, K., Rani, R.P. From Farm to Fuel: Animal-Based Bioenergy and Bioproducts. In: Arya, R.K., Verros, G.D., Verma, O.P., Hussain, C.M., (eds) From Waste to Wealth. Springer, Singapore 2024. https://doi.org/10.1007/978-981-99-7552-5_12.
  • 32. Iskakov, R.М., Iskakova, A.M., Issenov, S.S., Beisebekova, D.M. and Khaimuldinova, A.K. Technology of multi-stage sterilization of raw materials with the production of feed meal of high biological value. Journal of Pure and Applied Microbiology 2019, 13(1), 307–312.
  • 33. Iskakov, R.М., Iskakova, A.M., Nurushev, M.Zh., Khaimuldinova, A.K. and Karbayev N.K. Method for the Production of Fat from Raw Materials and Animal Waste. Journal of Pure and Applied Microbiology 2021, 15(2), 716–724.
  • 34. Perez-Bautista, J.d.J., Alvarez-Fuentes, G., Garcia-Lopez, J.C., Martinez-Martinez, R., Roque-Jimenez, J.A., Ghavipanje, N., Vargas-Bello-Perez, E., Lee-Rangel, H.A. Biotransforming of poultry and swine slaughterhouse waste as an alternative protein source for ruminant feeding. Nitrogen 2024, 5, 518–528. http://doi.org/10.3390/nitrogen5020034.
  • 35. Ndebele-Murisa, M.R., Mubaya, C.P., Dekesa, C.H., Samundengo, A., Kapute, F., Yossa, R. Sustainability of Aqua-Feeds in Africa. Preprints 2024, 2024072286. https://doi.org/10.20944/preprints202407.2286.v1.
  • 36. Besic, A. Animalni Otpad I Rizik Od Zoonoza - Osvrt Na Podrucja Bosne I Hercegovine I Regiona. Veterinaria 2023, 72(1), P.119–134. doi.org/10.51607/22331360.2023.72.1.119.
  • 37. Iskakov, R., Sugirbay, A. Technologies for the rational use of animal waste: A review. Sustainability 2023, 15(3). https://doi.org/10.3390/su15032278.
  • 38. Wang, H., Satake, U., Enomoto, T. Reduction of sawing forces in bone cutting: innovative oscillating saw mechanism based on trajectory analysis. Journal of Materials Processing Technology 2024, 332, 118563. https://doi.org/10.1016/j.jmatprotec.2024.118563.
  • 39. Wenner, L., Pauli, U., Summermatter, K., Gantenbein, H., Vidondo, B., Posthaus, H. Aerosol generation during bone-sawing procedures in veterinary autopsies. Veterinary Pathology 2017; 54(3): 425–436. https://doi.org/10.1177/0300985816688744.
  • 40. Ni, J., Cai, J., Meng, Z., Wang, Y. Influence of band-sawing processing parameters on the preparation of cortical bone flake. Advances in Mechanical Engineering 2021, 13(12). https://doi.org/10.1177/16878140211067032.
  • 41. Pathak, P., Fasano, J., Kim, Y.-C., Song, S.-E., Cho, H.J. Design and fabrication of micro saw enabling root-side cutting of bone. Micromachines 2023, 14, 856. https://doi.org/10.3390/mi14040856.
  • 42. Vergara, F., Castillo, G., Rojas, G., Montero, C. Estudio exploratorio del efecto de los parámetros de corte en la precisión de aserrado de la madera boliviana de hymenaea courbaril. Bosque 2024, 44(1), 149–158. https://doi.org/10.4067/S0717-92002023000100149.
  • 43. Kuvik, T., Krilek, J., Kováč, J., Melicherčík, J. Impact of cutting speed and feed rate for cross cutting with saw chains. BioResources 2021, 16(3), 5341–5349. https://doi.org/10.15376/biores.16.3.5341-5349.
  • 44. Krilek, J., Tavodová, M., Kovác, J., Tichy, B. Impact of irregular tooth pitch of circular saw blades on power for wood cross-cutting. Drvna Industrija 2020, 71(1), 3–11. https://doi.org/10.5552/drvind.2020.1824.
  • 45. Sarkisjan, B.A., Azarov, P.A. The comparative characteristics of sawcuts across the femoral bone. Forensic Medical Expertise 2014, 57(2), 48–51. (In Russian).
  • 46. Wang, Z., Zeng, Q., Lu, Z., Wan, L., Zhang, X., Liu, Z. Investigation of cutting performance of a circular saw blade based on ANSYS/LS-DYNA. Strojniski Vestnik-Journal of Mechanical Engineering 2021, 67(12), 649–665. https://doi.org/10.5545/sv-jme.2021.7322.
  • 47. Javorek, L., Kminiak, R., Vargovská, M., Csanády, E., Németh, S. Feed cutting force component in up and down sawing of pine. Drvna Industrija 2022, 73(3), 279–288. https://doi.org/10.5552/drvind.2022.0018.
  • 48. Yan, B., Liu, H., He, F., Deng, G., Zheng, S., Cui, Z., Zhou, S., Dai, Y., Wang, X., Qin, S., Li, G., Li, L., Li, B. Analysis and testing of pre-cut sugarcane seed stalk sawing performance parameters. Agriculture 2024, 14, 953. https://doi.org/10.3390/agriculture14060953.
  • 49. Kondratyuk, A.A., Shilko, V.K. Determination of the service life of band saws by cyclic durability. Izvestiya TPU 2004, No. 3. https://cyberleninka.ru/article/n/opredelenie-resursa-raboty-lentochnyh-pil-po-tsiklicheskoy-dolgovechnosti (date of access: 12.08.2024). (In Russian).
  • 50. Prokofiev, G.F., Kovalenko, O.L. Fatigue strength of band saws. News of universities. Forestry magazine 2023, No. 4. https://cyberleninka.ru/article/n/ustalostnaya-prochnost-lentochnyh-pil (date of access: 18.06.2024). (In Russian).
  • 51. Apazhev, A.K., Shekikhachev, Y.A., Hazhmetov, L.M., Fiaphev, A.G., Shekikhacheva, L.Z., Hapov, Y.S., Hazhmetova, Z.L., Gabachiyev, D.T. Scientific justification of power efficiency of technological process of crushing of forages. International Scientific Conference on Applied Physics, Information Technologies and Engineering 2019, 1399. https://doi.org/10.1088/1742-6596/1399/5/055002.
  • 52. Kruszelnicka, W., Hlosta, J., Diviš, J., Gierz, Ł. Study of the relationships between multi-hole, multi-disc mill performance parameters and comminution indicators. Sustainability 2021, 13, 8260.
  • 53. Kruszelnicka, W., Marek, O., Kingsly, A., Saugirdas, P., Andrzej, T., Patrycja, W. Energy-dependent particle size distribution models for multi-disc mill. Materials 2022, 15(17), 6067. https://doi.org/10.3390/ma15176067.
  • 54. Vidosavljević, S., Bojanić, N., Ilić, P., Rakić, D., Đuragić, O., Banjac, V., Fišteš, A. Optimization of grinding process of sunflower meal for obtaining protein-enriched fractions. Processes 2022, 10, 2704. https://doi.org/10.3390/pr10122704.
  • 55. Lieberwirth, H., Silbermann, F., Szczelina, P. New insights into double roll crushing. Minerals Engineering 2023, 202, 108298. https://doi.org/10.1016/j.mineng.2023.108298.
  • 56. Savinyh, P., Kazakov, V., Moshonkin, A., Ivanovs, S. Investigations in feeding device of grain crusher. 18-th International Scientific Conference Engineering for Rural Development 2019, 123–128. https://doi.org/10.22616/ERDev2019.18.N165.
  • 57. Macko, M., Tyszczuk, K., Smigielski, G., Flizikowski, J., Mrozinski, A. The use of CAD applications in the design of shredders for polymers. XXII Slovak-Polish Scientific Conference on Machine Modelling and Simulations 2018, 157, 02027. https://doi.org/10.1051/matecconf/201815702027.
  • 58. Punko, A.I., Romanchuk, D.I., Savinykh, V.N., Good, A.N. Analysis of designs of roller crushers for grain fodder. Mechanization and Electrification of Agriculture 2011, 45, 172–178. (In Russian).
  • 59. Vukmirovic, D.M., Levic, J.D., Fistes, A.Z., Colovic, R.R., Brlek, T.I., Colovic, D.S., Duragic, O.M. Influence of grinding method and grinding intensity of corn on mill energy consumption and pellet quality. Hemijska Industrija 2016, 70(1), 67–72. https://doi.org/10.2298/HEMIND141114012V.
  • 60. Klasner, G.G., Tarasov, V.S., Baranov, V.P. The study of the moment of resistance of the grinder of legumes. 2-nd International Scientific Conference Agribusiness, Environmental Engineering and Biotechnologies 2020, 421, 022013. https://doi.org/10.1088/1755-1315/421/2/022013.
  • 61. Abilzhanuly, T., Iskakov, R., Abilzhanov, D., Darkhan, O. Determination of the average size of preliminary grinded wet feed particles in hammer grinders. Eastern-European Journal of Enterprise Technologies 2023, 1(121), 34–43. https://doi.org/10.15587/1729-4061.2023.268519.
  • 62. Abilzhanuly, T., Iskakov, R., Abilzhanov, D., Gulyarenko, A., Khan, V. Identifying the influence of the pitch of hammers with cutting edges on the average length of feed crushed in hammer grinders. Eastern-European Journal of Enterprise Technologies 2024, 4(1(130)), 69–78. https://doi.org/10.15587/1729-4061.2024.310045.
  • 63. Gröndahl, A., Asbjörnsson, G., Hulthén, E., Evertsson, M. Diagnostics of cone crusher feed segregation using power draw measurements. Minerals Engineering 2018, 127, 15–21. https://doi.org/10.1016/j.mineng.2018.07.008.
  • 64. Alpeissov, Y., Iskakov, R., Issenov, S., Ukenova, A. Obtaining a formula describing the interaction of fine particles with an expanding gas flow in a fluid layer. Eastern-European Journal of Enterprise Technologies 2022, 2/1(116), 87–97. https://doi.org/10.15587/1729-4061.2022.255258.
  • 65. Issenov, S., Iskakov, R., Tergemes, K., Issenov, Z. Development of mathematical description of mechanical characteristics of integrated multi-motor electrical drive for drying plant. Eastern-European Journal of Enterprise Technologies 2022, 1/8(115), 46–54. https://doi.org/10.15587/1729-4061.2021.251232.
  • 66. Abilzhanuly, T., Iskakov, R., Issenov, S., Kubentaeva, G., Mamyrbayeva, I., Abilzhanov, D., Khaimuldinova, A., Khamitov, N. Development of a layer leveling technology that reduces the energy intensity of the processes of mixing and drying the fodder mass. Eastern-European Journal of Enterprise Technologies 2023, 4(7(124)), 106–115. https://doi.org/10.15587/1729-4061.2023.286325.
  • 67. Abilzhanuly, T., Iskakov, R., Abilzhanov, D., Gulyarenko, A., Khan, V. Justification of parameters of impact-spreading finger shaft for grinder-mixer-dryer using the example of eggshells. Eastern-European Journal of Enterprise Technologies 2024, 3(1(129)), 33–44. https://doi.org/10.15587/1729-4061.2024.304127.
  • 68. Chimwani, N., Bwalya, M.M. Milling studies in an impact crusher I: Kinetics modelling based on population balance modelling. Minerals 2021, 11(5), 470. https://doi.org/10.3390/min11050470.
  • 69. Lee, W., Park, S., Park, J. Grinding characteristics of waste printed circuit boards in hammer mill using population balance model. Geosystem Engineering 2021, 24(4), 173–179. https://doi.org/10.1080/12269328.2021.1942235.
  • 70. Li, T., Shi, G., Zhang, Q. Research on hammering characteristics of hammer mill based on discrete element method. Engineering Research Express 2024, 6(3), 035540. https://doi.org/10.1088/2631-8695/ad6ca4.
  • 71. Ammälä, A. Comparison of pin mill and hammer mill in the fine grinding of sphagnum moss. Energies 2023, 16(5). https://doi.org/10.3390/en16052437.
  • 72. Mishkhozhev, V.K., Teshev, A.S., Kazdokhov, K.K., Kurmanova, M.K., Mishkhozhev, K.V., Mishkhozhev, K.V. Mathematical modeling of the process of grinding grain materials. II International Scientific Conference on Applied Physics, Information Technologies and Engineering 2020, 1679, 042092. https://doi.org/10.1088/1742-6596/1679/4/042092.
  • 73. Fenchea, M. Design of hammer mills for optimum performance. Journal of Vibration and Control 2013, 19(14), 2100–2108. https://doi.org/10.1177/1077546312455210.
  • 74. Hong, S., Kim, S. Analysis of simulation result by digital filtering technique and improvement of hammer crusher. International Journal of Mineral Processing 2017, 169(10), 168–175. https://doi.org/10.1016/j.minpro.2017.11.004.
  • 75. Hou, Y., Xiong, G., Fang, P., Du, M., Wang, Y. Stability and synchronous characteristics of a two exciters vibration system considering material motion. Proceedings of the Institution of Mechanical Engineers Part K-Journal of Multi-Body Dynamics 2022, 236(1), 5–30. https://doi.org/10.1177/14644193211056138.
  • 76. Astashev, V., Krupenin, V. About some scientific principles of vibro-impact machine design. 17-th International Scientific Conference: Engineering for Rural Development 2018, 419–425. https://doi.org/10.22616/ERDev2018.17.N004.
  • 77. Sysuev, V., Savinyh, P., Aleshkin, A., Ivanovs, S. Simulation of elastic deformation propagation of grain under impact crushing in crusher. 15-th International Scientific Conference: Engineering for Rural Development 2016, 1065–1071.
  • 78. Abalikhin, A.M., Mukhanov, N.V., Krupin, A.V., Kolesnikova, A.I. Determination of the main efficiency indicators of forage grain grinder. International Conference Dedicated to Global Technological Trends in Agribusiness 2021, 624. https://doi.org/10.1088/1755-1315/624/1/012083.
  • 79. Savinyh, P., Shirobokov, V., Fedorov, O., Ivanovs, S. Influence of rotary grain crusher parameters on quality of finished product. 17-th International Scientific Conference: Engineering for Rural Development 2018, 131–136. https://doi.org/10.22616/ERDev2018.17.N158.
  • 80. Zhang, H., Qian, Y., Tian, H. Design and experimental optimization of v-shaped hammer for hammer mill. Inmateh-Agricultural Engineering 2024, 73(2), 191–200. https://doi.org/10.35633/inmateh-73-16.
  • 81. Li, G., Roufail, R., Klein, B., Nordell, L., Kumar, A., Sun, C., Koua, J. Experimental evaluation of the conjugate anvil hammer mill - comparison of semi-confined to confined particle breakage. Minerals Engineering 2019, 137, 34–42. https://doi.org/10.1016/j.mineng.2019.03.024.
  • 82. Paraschiv, G., Moiceanu, G., Voicu, G., Chitoiu, M., Cardei, P., Dinca, M.N., Tudor, P. Optimization issues of a hammer mill working process using statistical modelling. Sustainability 2021, 13, 973. https://doi.org/10.3390/su13020973.
  • 83. Moiceanu, G., Voicu, G., Paraschiv, G., Vladut, V., Cardei, P., Dinca, M. Relationships analysis between the grinding parameters of Miscanthus giganteus stalks using a hammer mill. Proceedings of the 47-th International Symposium on Agricultural Engineering, Opatija, Croatia, 5–7 March 2019; Kovacev, I., Bilandžija, N., Eds.; University of Zagreb, Faculty of Agriculture: Zagreb, Croatia, 2019, 399–407.
  • 84. Moiceanu, G., Chitoiu, M., Voicu, G., Paraschiv, G., Vladut, V., Gageanu, I., Dinca, M. Comparison between Miscanthus and willow energy consumption during grinding. Proceedings of the 46-th International Symposium on Agricultural Engineering, Opatija, Croatia, 27 February–1 March 2018; University of Zagreb, Faculty of Agriculture: Opatija, Croatia, 2018, 369–378.
  • 85. Xu, Y., Zhang, X., Wu, S., Chen, C., Wang, J., Yuan, S., Chen, B., Li, P., Xu, R. Numerical simulation of particle motion at cucumber straw grinding process based on EDEM. International Journal of Agricultural and Biological Engineering 2020, 13(6), 227–235. https://doi.org/10.25165/j.ijabe.20201306.5452.
  • 86. Liu, H., Rong, S.F., Wu, Y.H., Yang, P.H., Duan, X.L., Zhu, Y.C. Study on diagonal hammer of three kind metals composite casting with block protecting handle. International Conference on Mechatronics, Manufacturing and Materials Engineering 2016, 63. https://doi.org/10.1051/matecconf/20166303011.
  • 87. Bian, W.L., Rong, S.F., Zhu, Y.C., Zhou, H.T. Research and application of dual liquid bimetal composite casting hammer. Applied Mechanics and Materials 2012, 271–272. https://doi.org/10.4028/www.scientific.net/amm.271-272.268.
  • 88. Hong, S., Han, U.C., Kim, G.C., Ri, K.M., Ri, S. Numerical simulation of the collision breakage process between the agglomerate and hammer in a hammer crusher using DEM. Shock and Vibration 2023. https://doi.org/10.1155/2023/2838179.
  • 89. Iskakov, R.M., Mamirbaeva, I.K., Gulyarenko, A.A., Silaev, M.Y., Gusev, A.S. Improved hammers for crushers in feed production. Russian Engineering Research 2022, 42(10), 987–992.
  • 90. Wang, D., Tian, H., Zhang, T., He, C., Liu, F. DEM simulation and experiment of corn grain grinding process. Engenharia Agricola 2021, 41(5), 559–566. https://doi.org/10.1590/1809-4430-Eng.Agric.v41n5p559-566/2021.
  • 91. Viňáš, J., Brezinová, J., Brezina, J., Hermel, P. Innovation of biomass crusher by application of hardfacing layers. Metals 2021, 11, 1283. https://doi.org/10.3390/met11081283.
  • 92. Liu, B., Zhang, D., Zong, L. Investigation on the motion states of the hammers while hammer mill steady running by high-speed photography. History of Mechanical Technology and Mechanical Design 2011, 42, 317. https://doi.org/10.4028/www.scientific.net/AMM.42.317.
  • 93. Smits, M., Kronbergs, E. Determination centre of percussion for hammer mill hammers. 16-th International Scientific Conference: Engineering for Rural Development 2017, 364–368. https://doi.org/10.22616/ERDev2017.16.N072.
  • 94. Double Ended Hammer Mill Hammer. [online] [10.04.2017]. Available at: https://g3hammers.com/product/double-ended-hammer-mill-hammer/.
  • 95. Sysuev, V., Savinyh, P., Aleshkin, A., Ivanovs, S. Investigation of oscillations of hammer rotor of grain crusher. 16-th International Scientific Conference: Engineering for Rural Development 2017, 1225–1232. https://doi.org/10.22616/ERDev2017.16.N269.
  • 96. Yang, J.H., Fang, H.Y., Luo, M. Load and wear experiments on the impact hammer of a vertical shaft impact crusher. 4th Global Conference on Materials Science and Engineering. IOP Conf. Series: Materials Science and Engineering 2015, 103, 012041. https://doi.org/10.1088/1757-899X/103/1/012041.
  • 97. Wang, Q., Zhang, H. Simulation analysis for rotor’s strength of impact crusher. Applied Mechanics and Materials 2010, 42, 192–195. https://doi.org/10.4028/www.scientific.net/amm.42.192.
  • 98. Sun, K., Zhao, L., Long, Q. Optimization of process parameters for a vertical shaft impact crusher through the CFD-DEM method. Manufacturing Technology 2024, 24(2), 279–288. https://doi.org/10.21062/mft.2024.028.
  • 99. Bhadani, K., Asbjörnsson, G., Almefelt, M.S., Hulthén, E., Evertsson, M. Trade-off curves for performance optimization in a crushing plant. Minerals 2023, 13(10), 1242. https://doi.org/10.3390/min13101242.
  • 100. Honcharuk, I., Kupchuk, I., Solona, O., Tokarchuk, O., Telekalo, N. Experimental research of oscillation parameters of vibrating-rotor crusher. Przeglad Elektrotechniczny 2021, 97(3), 97–100. https://doi.org/10.15199/48.2021.03.19.
  • 101. Mou, X., Wan, F., Wu, J., Luo, Q., Xin, S., Ma, G., Zhou, X., Huang, X., Peng, L. Simulation analysis and multiobjective optimization of pulverization process of seed-used watermelon peel pulverizer based on EDEM. Agriculture 2024, 14, 308. https://doi.org/10.3390/agriculture14020308.
  • 102. Kyekyere, E., Olakanmi, E.O., Prasad, R.V.S., Matshediso, B., Motimedi, T., Botes, A., Pityana, S.L. Analysis of failure characteristics of screen plates of ring hammer crusher used in coal handling applications. Engineering Failure Analysis 2024, 162. https://doi.org/10.1016/j.engfailanal.2024.108351.
  • 103. Caponio, F., Catalano, P. Hammer crushers vs disk crushers: the influence of working temperature on the quality and preservation of virgin olive oil. Eur Food Res Technol 2001, 213, 219–224. https://doi.org/10.1007/s002170100364.
  • 104. Mao, P., Xu, N. Research of lasers coating applied with the hammer mill’s hammer. Advanced Manufacturing Technology 2011, 156–157, 708–712. https://doi.org/10.4028/www.scientific.net/AMR.156-157.708.
  • 105. Lin, J., Huang, P., He, F. Longevity study of the head of hammer crusher. Equipment Manufacturing Technology and Automation 2011, 317–319, 8. https://doi.org/10.4028/www.scientific.net/AMR.317-319.8.
  • 106. Huangping, Zhou, L., Yang, S. Research of manufactory technology for the hammer of single roll crusher. Equipment Manufacturing Technology and Automation 2011, 317–319, 162. https://doi.org/10.4028/www.scientific.net/AMR.317-319.162.
  • 107. Savinyh, P., Isupov, A., Ivanov, I., Ivanovs, S. Research in centrifugal rotary grinder of forage grain. 20-th International Scientific Conference “Engineering for Rural Development” 2021, 205–211. https://doi.org/10.22616/ERDev.2021.20.TF044.
  • 108. Mathur, S.M., Singh, P. Development and performance evaluation of a water hyacinth chopper cum crusher. Biosystems Engineering 2004, 88(4), 411–418. https://doi.org/10.1016/j.biosystemseng.2004.04.007.
  • 109. Abilzhanuly, T., Abilzhanov, D., Khamitov, N., Iskakov, R., Orazakhin, D., Naidenko, E. Justification of the speed of the knife and blade depending on the distance of the ejected mass through the deflector of a forage harvester. Izdenister Natigeler 2023, 3(99), 345–355. https://doi.org/10/37884/3-2023/35 (In Russian).
  • 110. Hernandez, S., Westover, T.L., Matthews, A.C., Ryan, J.C.B., Williams, C.L. Feeding properties and behavior of hammer- and knife-milled pin. Powder Technology 2017, 320, 191–201. https://doi.org/10.1016/j.powtec.2017.07.002.
  • 111. Lee, M.D., Ting, K.C., Ngu, H.J., Abu Hassan, N. Design and development of small-scale oil palm waste shredder for achieving technical, economic and environmental sustainability. 5-th International Conference on Mechanical Engineering Research 2020, 788, 012077. https://doi.org/10.1088/1757-899X/788/1/012077.
  • 112. Zhang, J., Feng, B., Guo, L., Kong, L., Zhao, C., Yu, X., Luo, W., Kan, Z. Performance test and process parameter optimization of 9FF type square bale straw crusher. International Journal of Agricultural and Biological Engineering 2021, 14(3), 232–240. https://doi.org/10.25165/j.ijabe.20211403.5970.
  • 113. Bulgakov, V., Pascuzzi, S., Ivanovs, S., Kaletnik, G., Yanovich, V. Angular oscillation model to predict the performance of a vibratory ball mill for the fine grinding of grain. Biosystems Engineering 2018, 171, 155–164.
  • 114. Voronin, V.V., Yarovoy, M.N., Vorokhobin, A.V., Chekhunov, O.A., Druzhinin, R.A. Comparative analysis towards the use of needle-shaped working body in sieve and sieve-free multifaceted crushers. 6-th International Conference on Agriproducts Processing and Farming 2020, 422. https://doi.org/10.1088/1755-1315/422/1/012114.
  • 115. Wang, D., He, C., Tian, H., Fei, L., Tao, Z., Zhang, H. Parameter optimization and experimental research on the hammer mill. Inmateh-Agricultural Engineering 2020, 62(3), 341–350. https://doi.org/10.35633/inmateh-62-36.
  • 116. Cotabarren, I., Fernández, M.P., Di Battista, A., Piña, J. Modeling of maize breakage in hammer mills of different scales through a population balance approach. Powder Technology 2020, 375, 433–444. https://doi.org/10.1016/j.powtec.2020.08.016.
  • 117. Teryushkov, V.P., Chupshev, A.V., Konovalov, V.V., Rodinov, Y.V., Gumarov, G.S. Numerical simulation of the operation of the disc shredder. 6-th International Conference on Agriproducts Processing and Farming 2020, 422, 012110. https://doi.org/10.1088/1755-1315/422/1/012110.
  • 118. Bertin, D., Cotabarren, I., Piña, J., Bucalá, V. Population balance discretization for growth, attrition, aggregation, breakage and nucleation. Computers & Chemical Engineering 2016, 84, 132–150. https://doi.org/10.1016/j.compchemeng.2015.08.011.
  • 119. Markochev, V.M., Alymov, M.I. On the brittle fracture theory by Ya. Frenkel and A. Griffith. Chebyshevskii Sbornik 2017, 18(3), 381–393.
  • 120. Zhou, Z.G., Du, S.Y., Wang, B. Investigation of anti-plane shear behavior of a Griffith crack in a piezoelectric material by using the non-local theory. International Journal of Fracture 2001, 111(2), 105–117.
  • 121. Akbari, M.J., Kazemi, S.R. Peridynamic analysis of cracked beam under impact. Journal of Mechanics 2020, 36(4), 451–463.
  • 122. Georgiadis, H.G. Finite length crack moving in a viscoelastic strip under impact. 1. Theory. Engineering Fracture Mechanics 1987, 27(5), 593–599.
  • 123. Yang, R.S., Xu, P., Yue, Z.W. Dynamic fracture analysis of crack–defect interaction for mode I running crack using digital dynamic caustics method. Engineering Fracture Mechanics 2017, 161(3), 243–250.
  • 124. Phurkhao, P. Normal impact response of a saturated porous cylinder with a penny-shaped crack. Theoretical and Applied Fracture Mechanics 2017, 87, 1–10.
  • 125. Ohr, S.M. An electron-microscope study of crack tip deformation and its impact on the dislocation theory of fracture. Materials Science and Engineering 1985, 72(1), 1–35.
  • 126. Bonet, J., Gil, A.J. Mathematical models of supersonic and intersonic crack propagation in linear elastodynamics. International Journal of Fracture 2021, 229(1), 55–75.
  • 127. Hisao, H., Hiroto, K. Theory of the inelastic impact of elastic materials. Phase Transitions 2004, 77(8–10), 889–909.
  • 128. Tang, W.Y., He, Y.S., Zhang, S.K., Yuan, M. Dynamic buckling of cracked beams subject to axial impacting. 15th International Offshore and Polar Engineering Conference (ISOPE 2005), Seoul, South Korea, 2005, 354–359.
  • 129.Akimune, Y., Akiba, T., Okamoto, Y., Hirosaki, N. Effect of materials properties on spherical-particle impact damage for ceramics. Journal of the Ceramic Society of Japan 1994, 102(7), 653–657.
  • 130. Wang, D.K., Sun, L.T., Wei, J.P. Microstructure evolution and fracturing mechanism of coal under thermal shock. Rock and Soil Mechanics 2019, 40(2), 529.
  • 131. Zhang, X., Hu, W., Zhang, W., Chen, W., Yue, H., Wen, B. Theoretical and numerical studies on vibratory synchronization transmission of a vibrating mechanical system driven by single motor considering sliding dry friction. IEEE Access 2021, 9, 64676–64685. https://doi.org/10.1109/ACCESS.2021.3075716.
  • 132. Zeng, Y.G., Forssberg, E. Effects of mill feed size and rod charges on grinding performance. Powder Technology 1992, 69(2), 119–123. https://doi.org/10.1016/0032-5910(92)85064-3.
  • 133. Chkalova, M., Pavlidis, V. Assessment of equipment efficiency in models of technological processes for production of combined feed. 20-th International Scientific Conference Engineering for Rural Development 2021, 843–848. https://doi.org/10.22616/ERDev.2021.20.TF193.
  • 134. Lee, C.H., Gil, A.J., Ghavamian, A., Bonet, J. A total Lagrangian upwind smooth particle hydrodynamics algorithm for large strain explicit solid dynamics. Comput Methods Appl Mech Eng 2019, 344, 209–250.
  • 135. Warzecha, M., Michalczyk, J. Calculation of maximal collision force in kinematic chains based on collision force impulse. Journal of Theoretical and Applied Mechanics (Poland) 2020, 58(2), 339–349.
  • 136. Zhiltsov, A.P., Vlasenko, D.A., Levchenko, E.P. Research and substantiation of structural and technological parameters of the process of grinding agglomeration fluxes in a hammer mill. Chernye Metally 2019, 10, 4–10.
  • 137. Munkhbayar, B., Bayaraa, N., Rehman, H., Kim, J., Chung, H., Jeong, H. Grinding characteristic of multi-walled carbon nanotubes-alumina composite particle. Journal of Wuhan University of Technology - Materials Science Edition 2012, 27(6), 1009–1013. https://doi.org/10.1007/s11595-012-0590-4.
  • 138. Abilzhanuly, T. Method of fineness adjustment of shredded particles of stem fodder in open-type machines. EurAsian Journal of BioSciences 2019, 13(1), 625–631.
  • 139. Astanakulov, K., Karshiev, F., Gapparov, S., Khudaynazarov, D., Azizov, S. Mini crusher-shredder for farms. E3S Web of Conferences 2021, 264, 04038.
  • 140. Zhang, X., Gan, S., Zheng, K., Li, Y., Liang, D. Design and experiment on cut roll feeding type horizontal shaft flail machine for banana pseudostem crushing and returning. Nongye Gongcheng Xuebao / Transactions of the Chinese Society of Agricultural Engineering 2015, 31(4), 33–41.
  • 141. Revenko, I., Khmelovskyi, V., Revenko, Y., Rebenko, V., Potapova, S. Justification of parameters affecting increase of hammer crusher productivity. Engineering for Rural Development 2023, 22, 714–720.
  • 142. Maiviatov, F., Karshiev, F., Gapparov, Sh. Movement of crushed stem particles when they interact with hammers. IOP Conference Series: Earth and Environmental Science 2021, 868(1), 012060.
  • 143. Graham, H., Rozis, J. Designing a device to assist in tuning the clearance in shredder hammer-grid bars. Proceedings of the 43rd Annual Conference of the Australian Society of Sugar Cane Technologists, ASSCT 2022, 332–337.
  • 144. Ding, L., Li, J., Kan, Z., Li, N., Ren, H. Wear behavior between a jujube branch and a hammer claw of a jujube branch crusher. Applied Engineering in Agriculture 2022, 38(5), 719–727.
  • 145. Wang, J., Zhai, Z., Lan, Y., Zhai, X., Zhao, L. Reliability analysis and optimization of forage crushers based on Bayesian network. International Journal of Performability Engineering 2023, 19(10), 700–709.
  • 146. Maratbekov, A.R., Iskakov, R.М. Device for crushing and drying raw materials in the production of fodder bone meal. Patent KZ5493, 2020, A23N-017/00.
  • 147. Iskakov, R.М. Impact splitting hammer for grinding. Patent KZ7050, 2022, B02C-13/00.
  • 148. Iskakov, M.M., Nukeshev, S.O., Iskakov, R.M., Masenov, K.B., Iskakova, A.M., Zaichko, G.A., Mustafin, Z.Z. Device useful for production of feed of veterinary condemned materials. Patent KZ27126-A4, 2013, A23N-017/00.
  • 149. Smerdov, V.V., Smerdov, M.V. Shredder. RU Patent No. 2492927, publ. 20/09/2013 (in Russian).
  • 150. Kutseev, V.V., Tituchenko, A.A., Golitsyn, A.S. Shredder. RU Patent No. 144351, publ. 20/08/2014 (in Russian).
  • 151. Wong, J.H., Karen, W.M.J., Bahrin, S.A., Chua, B.L., Melvin, G.J.H., Siambun, N.J. Wear mechanisms and performance of PET shredder blade with various geometries and orientations. Machines 2022, 10, 760. https://doi.org/10.3390/machines10090760.
  • 152. Nguyen, T.K., Chau, M.Q., Do, T.C., Pham, A.D. Characterization of geometrical parameters of plastic bottle shredder blade utilizing a two-step optimization method. Archive of Mechanical Engineering 2021, 68(3), 253–269. https://doi.org/10.24425/ame.2021.138392.
  • 153. Zhao, Q. Twarvial Shredder. Patent CN109046661(A), publ. 04/12/2019.
  • 154. Iskakov, R.M., Gulyarenko, A.A., Abilzhanuly, T., Remshev, E.Yu., Khan, V.A. Systems analysis of the design of shredder disk knives. Scientific Journal “Nauka i Tehnika Kazahstana” 2024, 2, 86–105 (in Russian).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8f09005b-ef30-43c4-8a18-b8578e7aaf08
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.