PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of Fatigue Cracks Using Gamma Function

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present study it has been endeavored to estimate the fatigue crack propagation in V-notch Charpy specimens of 2024 T351 Al-alloy. For this purpose, a new application of fatigue crack growth (FCG) is developed based on the “Gamma function.” Experimental fatigue tests are conducted for stress ratios from 0.1 to 0.5 under constant amplitude loading. The empiric model depends principally on physical parameters and materials’ properties in non-dimensional form. Deviation percentage, prediction ratio, and band error are used for validation of the performance of the fatigue life. The results determined from Gamma application are in good agreement with experimental FCG rates and those obtained from using Paris law.
Rocznik
Tom
Strony
29--46
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr., wzory
Twórcy
  • Faculty of Technology and Science, University of Tlemcen, BP 230 - 13000 ChetouaneTlemcen, Algeria
  • Faculty of Technology and Science, University of Tlemcen, BP 230 - 13000 ChetouaneTlemcen, Algeria
  • Faculty of Technology and Science, University of Tlemcen, BP 230 - 13000 ChetouaneTlemcen, Algeria
Bibliografia
  • Amaro, R. L., Rustagi, N., Findley, K. O., Drexler, E. S., & Slifka, A. J. (2014). Modeling the fatigue crack growth of X100 pipeline steel in gaseous hydrogen. International Journal of Fatigue, 59, 262-271. https://doi.org/10.1016/j.ijfatigue.2013.08.010.
  • Benachour, M., Belmokhtar, A., Benchour, N., & Benguediab, M. (2015). Enhanced Exponential Fatigue Crack Growth Model for Al-alloy. AASCIT Journal of Materials, 1(3), 57-63.
  • Bergner, F. (2001). The material-dependent variability of fatigue crack growth rates of aluminium alloys in the Paris regime. International Journal of Fatigue, 23(5), 383-394. https://doi.org/10.1016/s0142-1123(01)00006-8
  • Borges, M. F., Lopez-Crespo, P., Antunes, F. V., Moreno, B., Prates, P., Camas, D., & Neto, D. M. (2021). Fatigue crack propagation analysis in 2024-T351 aluminium alloy using nonlinear parameters. International Journal of Fatigue, 153, 106478. https://doi.org/10.1016/j.ijfatigue.2021.106478
  • Correia, J. A. F. O., De Jesus, A. M. P., Moreira, P. M. G. P., & Tavares, P. J. S. (2016). Crack Closure Effects on Fatigue Crack Propagation Rates: Application of a Proposed Theoretical Model. Advances in Materials Science and Engineering, 2016, 1-11. https://doi.org/10.1155/2016/3026745
  • Chabat, C. (1990). Introduction à l’analyse complexe. Tome 1 : Fonctions d’une variable. Éditions Mir Moscou.
  • De Iorio, A., Grasso, M., Penta, F., & Pucillo, G. P. (2012). A three-parameter model for fatigue crack growth data analysis. Frattura ed Integrità Strutturale, 6(21), 21-29. https://doi.org/10.3221/igf-esis.21.03
  • Forman R.G., & Metto, S.R. (1990). Behavior of surface and corner cracks subjected to tensile and bending loads in Ti-6A1-4V alloy. National Aeronautics and Space Administration, Lyndon B. Johnson Space Center.
  • Grasso, M., Penta, F., Pinto, P., & Pucillo, G. P. (2013). A four-parameters model for fatigue crack growth data analysis. Frattura ed Integrità Strutturale, 7(26), 69-79. https://doi.org/10.3221/igf-esis.26.08
  • Hertzberg, R. W. (1996). Deformation and fracture mechanics of engineering materials (Edition 4). J. Wiley & Sons.
  • Heuler, P., & Schütz, W. (1986). Assessment of concepts for Fatigue Crack initiation and propagation life prediction. Materialwissenschaft und Werkstofftechnik, 17(11), 397-405. https://doi.org/10.1002/mawe.19860171105
  • Irwin, G.R., Kraft, J.M., Paris, P.C., & Wells, A.A. (1967). Basic Aspects of Crack Growth and Fractore. NLR Report 6598. November 21, 1967.
  • Jiang, S., Zhang, W., Li, X., & Sun, F. (2014). An Analytical Model for Fatigue Crack Propagation Prediction with Overload Effect. Mathematical Problems in Engineering, 2014, 1-9. https://doi.org/10.1155/2014/713678
  • Kameia, K., & Khan, M. A. (2020). Influence of Temperature on Fatigue Crack Growth and Structural Dynamics. TESConf 2020 - 9th International Conference on Through-life Engineering Services. http://dx.doi.org/10.2139/ssrn.3717712.
  • Kebir, T., Benguediab, M., & Abdellatif, I. (2017). Influence of the variability of the elastics properties on plastic zone and fatigue crack growth. Mechanics and Mechanical Engineering, 21(4), 919-934.
  • Khelil, F., Aour, B., Belhouari, M., & Benseddiq, N. (2013). Modeling of Fatigue Crack Propagation in Aluminum Alloys Using an Energy Based Approach. Engineering, Technology & Applied Science Research, 3(4), 488-496. https://doi.org/10.48084/etasr.329
  • Koyama, M., Eguchi, T., & Tsuzaki, K. (2021). Fatigue Crack Growth at Different Frequencies and Temperatures in an Fe-based Metastable High-entropy Alloy. ISIJ International, 61(2), 641-647. https://doi.org/10.2355/isijinternational.isijint-2020-504
  • Li, H. F., Zhang, P., Wang, B., & Zhang, Z. F. (2022). Predictive fatigue crack growth law of high-strength steels. Journal of Materials Science & Technology, 100, 46-50. https://doi.org/10.1016/j.jmst.2021.04.042
  • Maruschak, P., Vorobel, R., Student, O., Ivasenko, I., Krechkovska, H., Berehulyak, O., Mandziy, T., Svirska, L., & Prentkovskis, O. (2021). Estimation of Fatigue Crack Growth Rate in Heat-Resistant Steel by Processing of Digital Images of Fracture Surfaces. Metals, 11(11), 1776. https://doi.org/10.3390/met11111776
  • Mohanty, J., Verma, B., & Ray, P. (2009). Prediction of fatigue crack growth and residual life using an exponential model: Part I (constant amplitude loading). International Journal of Fatigue, 31(3), 418-424. https://doi.org/10.1016/j.ijfatigue.2008.07.015
  • Mohanty, J. R., Verma, B. B., & Ray, P. K. (2009a). Prediction of fatigue life with interspersed mode-I and mixed-mode (I and II) overloads by an exponential model: Extensions and improvements. Engineering Fracture Mechanics, 76(3), 454-468. https://doi.org/10.1016/j.engfracmech.2008.12.001.
  • Noroozi, A., Glinka, G., & Lambert, S. (2007). A study of the stress ratio effects on fatigue crack growth using the unified two-parameter fatigue crack growth driving force. International Journal of Fatigue, 29(9-11), 1616-1633. https://doi.org/10.1016/j.ijfatigue.2006.12.008
  • Paris, P., & Erdogan, F. (1963). A Critical Analysis of Crack Propagation Laws. Journal of Basic Engineering, 85(4), 528-533. https://doi.org/10.1115/1.3656900
  • Pawan, K., Vaneshwar, K., Ray, P.K., & Verma, B.B. (2016). Modelling of Fatigue Crack Propagation in Part-Through Cracked Pipes Using Gamma Function. Mechanics, Materials Science & Engineering, 6(2016). https://doi.org/10.13140/RG.2.2.16973.03043.
  • Quan, H., Alderliesten, R. C., & Benedictus, R. (2018). The stress ratio effect on plastic dissipation during fatigue crack growth. MATEC Web of Conferences, 165, 13002. https://doi.org/10.1051/matecconf/201816513002
  • Ritchie, R. O. (1988). Mechanisms of fatigue crack propagation in metals, ceramics and composites: Role of crack tip shielding. Materials Science and Engineering: A, 103(1), 15-28. https://doi.org/10.1016/0025-5416(88)90547-2
  • Ritchie, R. O. (1999). Mechanisms of fatigue-crack propagation in ductile and brittle solids. International Journal of Fracture, 100(1), 55-83. https://doi.org/10.1023/a:1018655917051
  • Tada, H., Paris P.C., & Irwin, G.R. (1973). The stress analysis of cracks handbook, 3rd ed. Del Research Corporation, Hellertown, Pensylvania.
  • Tzamtzis, A., & Kermanidis, A. T. (2015). Fatigue crack growth prediction in 2xxx AA with friction stir weld HAZ properties. Frattura ed Integrità Strutturale, 10(35), 396-404. https://doi.org/10.3221/igf-esis.35.45
  • Walker, K. (b. d.). The Effect of Stress Ratio During Crack Propagation and Fatigue for 2024-T3 and 7075-T6 Aluminum. In: Effects of Environment and Complex Load History on Fatigue Life (s. 1-1-14). ASTM International. https://doi.org/10.1520/stp32032s
  • Wang, Y., Charbal, A., Hild, F., Roux, S., & Vincent, L. (2019). Crack initiation and propagation under thermal fatigue of austenitic stainless steel. International Journal of Fatigue, 124, 149-166. https://doi.org/10.1016/j.ijfatigue.2019.02.036
  • Wolf, E. (1970). Fatigue crack closure under cyclic tension. Engineering Fracture Mechanics, 2(1), 37-45. https://doi.org/10.1016/0013-7944(70)90028-7
  • Xu, L., Yu, X., Hui, L., & Zhou, S. (2017). Fatigue life prediction of aviation aluminium alloy based on quantitative pre-corrosion damage analysis. Transactions of Nonferrous Metals Society of China, 27(6), 1353-1362. https://doi.org/10.1016/s1003-6326(17)60156-0
  • Zerbst, U., & Klinger, C. (2019). Material defects as cause for the fatigue failure of metallic components. International Journal of Fatigue, 127, 312-323. https://doi.org/10.1016/j.ijfatigue.2019.06.024
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8f0889db-d103-4853-95e7-cdbc929e0d05
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.