Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The problem of mathematical modelling and indication of properties of a DIP has been investigated in this paper. The aim of this work is to aggregate the knowledge on a DIP modelling using the Euler-Lagrange formalism in the presence of external forces and friction. To indicate the main properties important for simulation, model parameters identification and control system synthesis, analytical and numerical tools have been used. The investigated properties include stability of equilibrium points, a chaos of dynamics and non-minimum phase behaviour around an upper position. The presented results refer to the model of a physical (constructed) DIP system.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
459--483
Opis fizyczny
Bibliogr. 26, rys., tab., wykr., wzory
Twórcy
autor
- Department of Electrical Engineering, Control Systems and Informatics, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
autor
- Department of Electrical Engineering, Control Systems and Informatics, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
autor
- Department of Electrical Engineering, Control Systems and Informatics, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
autor
- Department of Electrical Engineering, Control Systems and Informatics, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
autor
- Department of Electrical Engineering, Control Systems and Informatics, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
- [1] I. Ali and M. Hossen: A two-wheeled self-balancing robot with dynamics model. In Proceedings of the 4th International Conference on Advances in Electrical Engineering (ICAEE), Dhaka, Bangladesh, 271–275, 2017.
- [2] K. Andrzejewski, M. Czyżniewski, and M. Zielonka: Synthesis and implementation of control system for double inverted pendulum. BSc Thesis, Gdańsk University of Technology, (in Polish), 2017.
- [3] R. P. M. Chan, K. A. Stol, and C. R. Halkyard: Review of modelling and control of two-heeled robots. Annual Reviews in Control, 37(1), (2013), 89–103.
- [4] J. Chestnutt, M. Lau, G. Cheung, J. Kuffner, J. Hodgins, and T. Kanade: Footstep planning for the Honda ASIMO humanoid. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, 629–634, 2005.
- [5] F. Dorfler and F. Bullo: Synchronization in complex networks of phase oscillators: A survey. Automatica, 50 (2014), 1539–1564.
- [6] C. Gonzalez, I. Alvarado, and D. Munoz La Pena: Lowcost two-wheels self-balancing robot for control education. In Proceedings of the 20th IFAC World Congress, Toulouse, France, 50 (2017), 9174–9179.
- [7] F. Grasser, A. D’Arrigo, S. Colombi, and A. C. Rufer: JOE: A mobile, inverted pendulum. IEEE Transactions on Industrial Electronics, 49(1), (2002), 107–114.
- [8] S. Jadlovská and J. Sarnovský: Classical double inverted pendulum – a complex overview of a system. In Proceedings of the IEEE 10th Jubilee International Symposium on Applied Machine Intelligence and Informatics, Herl’any, Slovakia, 103–108, 2012.
- [9] J. Kędzierski and K. Tchoń: Feedback control of a balancing robot. In Proceedings of the 14th IFAC Conference on Methods and Models in Automation and Robotics, Międzyzdroje, Poland, 42 (2009), 495–500.
- [10] H. E. Khalil: Nonlinear systems, 2nd edition. Prentice Hall, Upper Saddle River, New Jersey, US, 1996.
- [11] Y. Kim, S. H. Kim, and Y. K. Kwak: Dynamic analysis of a nonholonomic two-wheeled inverted pendulum robot. Journal of Intelligent and Robotic Systems: Theory and Applications, 44(1), (2005), 25–46.
- [12] U. E. Kocamaz, A. Göksu, H. Taşkın, and Y. Uyaroğlu: Synchronization of chaos in nonlinear finance system by means of sliding mode and passive control methods: A comparative study. Information Technology and Control, 44(2), (2015), 172–181.
- [13] I. D. Loram and M. Lakie: Human balancing of an inverted pendulum: position control by small, ballistic-like, throw and catch movements. The Journal of Physiology, 540 (2002), 1111-1124.
- [14] M. Muhammad, S. Buyamin, M. N. Ahmad, and S. W. Nawawi: Dynamic modeling and analysis of a two-wheeled inverted pendulum robot. In Proceedings of the 3rd International Conference on Computational Intelligence, Modelling and Simulation (CIMSim), Langkawi, Malaysia, 159–164, 2011.
- [15] H. G. Nguyen, J. Morrell, K. D. Mullens, A. B. Burmeister, S. Miles, N. Farrington, K. M. Thomas, and D. W. Gage: Segway robotic mobility platform. In D. W. Gage, editor, Proceedings of SPIE Mobile Robots XVII, vol. 5609, 207–220, 2004.
- [16] M. Prasad and N. W. Nirwan: Design and fabrication of automatic balancing bicycle. International Journal of Science, Engineering and Technology Research, 5 (2016), 532–536.
- [17] M. Rosenblum and A. Pikovsky: Synchronization: from pendulum clocks to chaotic lasers and chemical oscillators. Contemporary Physics, 44(5), (2003), 401–416.
- [18] Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, and K. Fujimura: The intelligent ASIMO: system overview and integration. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, Switzerland, 2478–2483, 2002.
- [19] B. Sawatzky, I. Denison, S. Langrish, S. Richardson, K. Hiller, and B. Slobogean: The segway personal transporter as an alternative mobility device for people with disabilities: A pilot study. Archives of Physical Medicine and Rehabilitation, 88 (2007), 1423–1428.
- [20] J-J. E. Slotine and W. Li: Applied nonlinear control. Prentice Hall, Englewood Cliffs, New Jersey, US, 1991.
- [21] N. Sozhamadevi and S. Sathiyamoorthy: Modeling and control of an unstable system using probabilistic fuzzy inference system. Archives of Control Sciences, 25(3), (2015), 377–396.
- [22] M. W. Spong: Underactuated mechanical systems. In B. Siciliano and K. P. Valavanis, editors, Control Problems in Robotics and Automation. Lecture Notes in Control and Information Sciences, vol. 230, Berlin, Heidelberg, 1998. Springer.
- [23] T. Takei, R. Imamura, and S. Yuta: Baggage transportation and navigation by a wheeled inverted pendulum mobile robot. IEEE Transactions on Industrial Electronics, 56(10), (2009), 3985–3994.
- [24] M. Velazquez, D. Cruz, S. Garcia, and M. Bandala: Velocity and motion control of a self-balancing vehicle based on a cascade control strategy. International Journal of Advanced Robotic Systems, 13(3), (2016), 1–11.
- [25] S. Wenxia and C. Wei: Simulation and debugging of LQR control for two-wheeled self-balanced robot. In Proceedings of the Chinese Automation Congress (CAC), Jinan, China, 2391–2395, 2017.
- [26] W. Zhong and H. Rock: Energy and passivity based control of the double inverted pendulum on a cart. In Proceedings of the 2001 IEEE International Conference on Control Applications,Mexico City,Mexico, 896–901, 2001.
Uwagi
EN
1. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (CC BY-NC-ND 3.0 https://creativecommons.org/licenses/by-nc-nd/3.0/), which permits use, distribution, and reproduction in any medium, provided that the article is properly cited, the use is non-commercial, and no modifications or adaptations are made.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8f04ceee-ce3e-4d47-8968-f53d60572954