PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Proteomic profiling of exosomes derived from pancreatic beta-cells cultured under hyperglycemia

Identyfikatory
Warianty tytułu
Konferencja
4th Jagiellonian Symposium on Advances in Particle Physics and Medicine, Krakow, 10-15 July 2022
Języki publikacji
EN
Abstrakty
EN
Cargo carried by extracellular vesicles (EVs) is considered a promising diagnostic marker, especially proteins. EVs can be divided according to their size and way of biogenesis into exosomes (diameter < 200 nm) and ectosomes (diameter > 200 nm). Exosomes are considered to be of endocytic origin, and ectosomes are produced by budding and shedding from the plasma membrane [1]. Methods The first step of this study was a characterization of the exosome sample. Using Tunable Resistive Pulse Sensing (qNano) size distribution and concentration were measured. The mean size of exosomes was 120±9.17 nm. In the present study, a nano liquid chromatography coupled with tandem mass spectrometry (nanoLCMS/MS) was used to compare protein profiles of exosomes secreted by pancreatic beta cells (1.1B4) grown under normal glucose (NG, 5 mM D-glucose) and high glucose (HG, 25 mM D-glucose) conditions. The EV samples were lysed, and proteins were denatured, digested, and analyzed using a Q-Exactive mass spectrometer coupled with the UltiMate 3000 RSLC nano system. The nanoLC-MS/MS data were searched against the SwissProt Homo sapiens database using MaxQuant software and protein quantitation was done by the MaxLFQ algorithm. Statistical analysis was carried out with Perseus software. Further bioinformatic analysis was performed using the FunRich 3.1.4 software with the UniProt protein database and String [2]. Results As a result of the nanoLC-MS/MS analysis more than 1,000 proteins were identified and quantified in each sample. The average number of identified proteins in exosomes was 1,397. Label-free quantitative analysis showed that exosome composition differed significantly between those isolated under NG and HG conditions. Many pathways were down-regulated in HG, particularly the ubiquitin-proteasome pathway. In addition, a significant up-regulation of the Ras-proteins pathway was observed in HG. Conclusion Our description of exosomes protein content and its related functions provides the first insight into the EV interactome and its role in glucose intolerance development and diabetic complications. The results also indicate the applicability of EV proteins for further investigation regarding their potential as circulating in vivo biomarkers.
Słowa kluczowe
Rocznik
Strony
151--157
Opis fizyczny
Bibliogr. 34 poz., rys.
Twórcy
  • M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
  • Centre for Theranostics, Jagiellonian University, Kraków, Poland
  • Proteomics and Mass Spectrometry Core Facility, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
  • Instytut Fizyki im. Mariana Smoluchowskiego, Uniwersytet Jagielloński, 11 Łojasiewicza St., 30-348 Kraków, Poland
  • Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
  • Centre for Theranostics, Jagiellonian University, Kraków, Poland
Bibliografia
  • [1] Sekuła M, Janawa G, Stankiewicz E, Stepień E. Endothelial microparticle formation in moderate concentrations of homocysteine and methionine in vitro. Cell Mol Biol Lett 2011;16(1):69-78.
  • [2] Surman M, Kędracka-Krok S, Hoja-Łukowicz D, Jankowska U, Drożdż A, Stępień E, et al. Mass spectrometry-based proteomic characterization of cutaneous melanoma ectosomes reveals the presence of cancer-related molecules. Int J Mol Sci 2020;21(8): 2934.
  • [3] Sharp-Tawfik A, Fletcher JD, Guergues J, MareliaBennett C, Wolf TJ, Coiner AM, et al. Proteomic examination of Cornus officinalis stimulated 1.1B4 human pancreatic cells reveals activation of autophagy and Keap1/Nrf2 pathway. Mol Cell Endocrinol 2022;557:111773.
  • [4] Vasu S, McClenaghan NH, McCluskey JT, Flatt PR. Cellular responses of novel human pancreatic β-cell line, 1.1B4 to hyperglycemia. Islets 2013;5:4,170-177.
  • [5] Michael A, Bajracharya SD, Yuen PST, Zhou H, Star RA, Illei GG, et al. Exosomes from human saliva as a source of microRNA biomarkers. Oral Dis 2010;16(1):34-8.
  • [6] Alexandru N, Badila E, Weiss E, Cochior D, Stępień E, Georgescu A. Vascular complications in diabetes: Microparticles and microparticle associated microRNAs as active players Dedicated to the 150th anniversary of the Romanian Academy. Biochem Biophys Res Commun 2016;472(1):1-10.
  • [7] Stȩpien E, Durak-Kozica M, Kamińska A, TargoszKorecka M, Libera M, Tylko G, et al. Circulating ectosomes: Determination of angiogenic microRNAs in type 2 diabetes. Theranostics 2018; 8(14):3874-3890.
  • [8] Stȩpień E, Costa MC, Enguita FJ. miRNAtools: Advanced training using the miRNA web of knowledge. Noncoding RNA 2018;4(1):1-8.
  • [9] Surman M, Stȩpień E, Przybyło M. Melanoma-derived extracellular vesicles: Focus on their proteome. Proteomes 2019;7(2):21.
  • [10] Surman M, Kędracka-Krok S, Wilczak M, Rybczyński P, Jankowska U, Przybyło M. Comparative Proteomic Profiling of Ectosomes Derived from Thyroid Carcinoma and Normal Thyroid cells Uncovers Multiple Proteins with Functional Implications in Cancer. Cells. 2022 Apr 1;11(7):1184.
  • [11] Tran F, Boedicker JQ. Genetic cargo and bacterial species set the rate of vesicle-mediated horizontal gene transfer. Sci Rep 2017;7, 8813.
  • [12] Stȩpień E, Rząca C, Moskal P. Novel biomarker and drug delivery systems for theranostics - Extracellular vesicles. Bio-Algorithms and Med-Syst 2021;17(4):301-309.
  • [13] Marzec ME, Rząca C, Moskal P, Stępień EŁ. Study of the influence of hyperglycemia on the abundance of amino acids, fatty acids, and selected lipids in extracellular vesicles using TOF-SIMS. Biochem Biophys Res Commun 2022;622:30-6.
  • [14] Kamińska A, Roman M, Wróbel A, Gala-Błądzińska A, Małecki MT, Paluszkiewicz C, et al. Raman spectroscopy of urinary extracellular vesicles to stratify patients with chronic kidney disease in type 2 diabetes. Nanomedicine: NBM 2022;39:102468.
  • [15] Hughes CS, Foehr S, Garfield DA, Furlong EE, Steinmetz LM, Krijgsveld J. Ultrasensitive proteome analysis using paramagnetic bead technology. Mol Syst Biol 2014;10(10):757.
  • [16] Tyanova S, Temu T, Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc 2016;11,2301-2319.
  • [17] Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M. Andromeda: A Peptide Search Engine Integrated into the MaxQuant Environment. J. Proteome Res. 2011;10(4):1794-1805.
  • [18] Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 2016;13,731-740.
  • [19] Stępień E, Rząca C, Jankowska U. Proteomic profiling of exosomes derived from pancreatic beta-cells cultured under hyperglycemia.” Kraków : Repozytorium Uniwersytetu Jagiellońskiego. 2022. doi: 10.26106/93z7-4545.
  • [20] Ding XQ, Wang ZY, Xia D, Wang RX, Pan XR, Tong JH. Proteomic Profiling of Serum Exosomes From Patients With Metastatic Gastric Cancer. Front Oncol 2020;10:1113.
  • [21] Zerial M, McBride H. Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2001;2(2):107-17.
  • [22] Hutagalung AH, Novick PJ. Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev 2011;91(1):119-49.
  • [23] Sexton RE, Mpilla G, Kim S, Philip PA, Azmi AS. Ras and exosome signaling. Semin Cancer Biol 2019;54:131-7.
  • [24] Savina A, Fader CM, Damiani MT, Colombo MI. Rab11 Promotes Docking and Fusion of Multivesicular Bodies in a Calcium-Dependent Manner. Traffic 2005;6(2):131-43.
  • [25] Dickson LJ, Liu S, Storrie B. Rab6 is required for rapid, cisternal-specific, intra-Golgi cargo transport. Sci Rep 2020;10(1):16604.
  • [26] McKerracher L, Ferraro GB, Fournier AE. Rho Signaling and Axon Regeneration. Int Rev Neurobiol. 2012;105:117-40.
  • [27] Tasaka S, Koh H, Yamada W, Shimizu M, Ogawa Y, Hasegawa N, et al. Attenuation of Endotoxin-Induced Acute Lung Injury by the Rho-Associated Kinase Inhibitor, Y-27632. Am J Respir Cell Mol Biol. 2005 Jun;32(6):504-10.
  • [28] Thibaudeau TA, Smith DM. A Practical Review of Proteasome Pharmacology. Pharmacol Rev 2019;71(2):170-97.
  • [29] Kunjappu MJ, Hochstrasser M. Assembly of the 20S proteasome. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2014;1843(1):2-12.
  • [30] Bard JAM, Goodall EA, Greene ER, Jonsson E, Dong KC, Martin A. Structure and Function of the 26S Proteasome. Annu Rev Biochem 2018; 87:697.
  • [31] The UniProt Consortium, UniProt: the universal protein knowledgebase in 2021, Nucleic Acids Research 2021;49;D1,D480-D489.
  • [32] Radhakrishnan SK, Lee CS, Young P, Beskow A, Chan JY, Deshaies RJ. Transcription Factor Nrf1 Mediates the Proteasome Recovery Pathway after Proteasome Inhibition in Mammalian Cells. Mol Cell 2010;38(1):17-28.
  • [33] Durak-Kozica M, Paszek E, Stȩpień E. Role of the Wnt signalling pathway in the development of endothelial disorders in response to hyperglycaemia. Expert Rev Mol Med 2019;2:e7.
  • [34] Kim H, Kim DW, Cho JY. Exploring the key communicator role of exosomes in cancer microenvironment through proteomics. Proteome Sci 2019;17(1):1-14.
Uwagi
Opublikowane przez Sciendo. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8f01b5d2-4955-4f1c-a101-d833982c340d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.