PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Face recognition technology using the fusion of local descriptors

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Proceedings of the 2022 International Conference on Research in Management & Technovation
Języki publikacji
EN
Abstrakty
EN
Local phase quantization (LPQ) descriptor, first introduced by Ojansivu and Heikkila (2008), has successfully been applied in face recognition systems. In this paper, we combine local intensity area descriptor (LIAD), which was first introduced by Tran (2017), with LPQ descriptor to develop robust face recognition systems using LPQ descriptor. Face images were first encoded by LIAD as a noise and dimensionality reduction step. After that, the resulting images were presented through LPQ as a feature extraction step. A nearest neighbor method with chi-square measure is used in classification. Two famous datasets (the ORL Database of Faces and FERET) were used in experiments. The results confirmed that our proposed approach reached mean recognition accuracies that are 0.17\% ÷ 7.7\% better compared to five conventional descriptors (LBP, LDP, LDN, LTP, and LPQ).
Rocznik
Tom
Strony
227--231
Opis fizyczny
Bibliogr. 22 poz. fot., rys., tab.
Twórcy
  • AI Technology Center Group, Samsung Display, Vietnam Company Bacninh, Vietnam
autor
  • AI Technology Center Group, Samsung Display, Vietnam Company Bacninh, Vietnam
  • Faculty of Information Technology, Hanoi University of Industry, Hanoi, Vietnam
Bibliografia
  • 1. M. O. Oloyede, G. P. Hancke, and H. C. Myburgh, "A review on face recognition systems: recent approaches and challenges," Multimedia Tools and Applications, vol. 79, no. 37, pp. 27891-27922, 2020.
  • 2. C. K. Tran, C. D. Tseng, L. Chang, and T. F. Lee, "Face recognition under varying lighting conditions: improving the recognition accuracy for local descriptors based on weber-face followed by difference of Gaussians," Journal of the Chinese Institute of Engineers, vol. 42, no. 7, pp. 593-601, 2019.
  • 3. J. Sun, Y. Lv, C. Tang, H. Sima, and X. Wu, "Face Recognition Based on Local Gradient Number Pattern and Fuzzy Convex-Concave Partition," IEEE Access, vol. 8, pp. 35777-35791, 2020.
  • 4. X. Wei, H. Wang, B. Scotney, and H. Wan, "Selective multi-descriptor fusion for face identification," International Journal of Machine Learning and Cybernetics, vol. 10, no. 12, pp. 3417-3429, 2019.
  • 5. F. Liu, Z. Tang, and J. Tang, "WLBP: Weber local binary pattern for local image description," Neurocomputing, vol. 120, pp. 325-335, 2013.
  • 6. T. Ojala, M. Pietikäinen, and D. Harwood, "A comparative study of texture measures with classification based on feature distributions," Pattern Recognition, vol. 29, no. 1, pp. 51-59, 1996.
  • 7. T. Xiaoyang and B. Triggs, "Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions," Image Processing, IEEE Transactions on, vol. 19, no. 6, pp. 1635-1650, 2010.
  • 8. T. Jabid, M. H. Kabir, and C. Oksam, "Facial expression recognition using Local Directional Pattern (LDP)," in Image Processing (ICIP), 2010 17th IEEE International Conference on, 2010, pp. 1605-1608.
  • 9. C. K. Tran, T. F. Lee, and P. J. Chao, "Improving face recognition performance using similarity feature-based selection and classification algorithm," Journal of Information Hiding and Multimedia Signal Processing, vol. 6, no. 1, 2015.
  • 10. T. Ahonen, E. Rahtu, V. Ojansivu, and J. Heikkilä, "Recognition of Blurred Faces Using Local Phase Quantization," in International Conference on Pattern Recognition, 2008, pp. 1-4.
  • 11. V. Ojansivu and J. Heikkilä, "Blur Insensitive Texture Classification Using Local Phase Quantization," in Image and Signal Processing, vol. 5099, A. Elmoataz, O. Lezoray, F. Nouboud, and D. Mammass, Eds. (Lecture Notes in Computer Science: Springer Berlin Heidelberg, 2008, pp. 236-243.
  • 12. D. G. Lowe, "Distinctive Image Features from Scale-Invariant Keypoints," Int. J. Comput. Vision, vol. 60, no. 2, pp. 91-110, 2004.
  • 13. H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, "Speeded-Up Robust Features (SURF)," Computer Vision and Image Understanding, vol. 110, no. 3, pp. 346-359, 2008.
  • 14. N. Dalal and B. Triggs, "Histograms of oriented gradients for human detection," in Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, 2005, vol. 1, pp. 886-893 vol. 1.
  • 15. C. K. Tran et al., "Local intensity area descriptor for facial recognition in ideal and noise conditions," Journal of Electronic Imaging, vol. 26, no. 2, pp. 023011-1 - 023011-10, 2017.
  • 16. A. T. L. Cambridge. The Database of Faces [Online]. Available: http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
  • 17. P. J. Phillips, H. Moon, S. A. Rizvi, and P. J. Rauss, "The FERET Evaluation Methodology for Face Recognition Algorithms," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 10, pp. 1090-1104, 2000.
  • 18. E. Kreyszig, Advanced Engineering Mathematics, 10 ed. John Wiley & Sons, 2010, p. 1264.
  • 19. F. Jafari and H. Rashidy Kanan, "Disguised Face Recognition by Using Local Phase Quantization and Singular Value Decomposition," (in en), Journal of Computer & Robotics, vol. 9, no. 1, pp. 51-60, 2016.
  • 20. J. Jiao and Z. Deng, "Deep combining of local phase quantization and histogram of oriented gradients for indoor positioning based on smartphone camera," International Journal of Distributed Sensor Networks, vol. 13, no. 1, 2017.
  • 21. L. Nanni, S. Brahnam, and A. Lumini, "Local phase quantization descriptor for improving shape retrieval/classification," Pattern Recognition Letters, vol. 33, no. 16, pp. 2254-2260, 2012.
  • 22. C. K. Tran, T. H. Ngo, C. N. Nguyen, and L. A. Nguyen, "SVM-Based Face Recognition through Difference of Gaussians and Local Phase Quantization," International Journal of Computer Theory and Engineering, vol. 13, no. 1, pp. 1-8, 2021.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8f00a6d6-d064-4875-825f-2666d62c4650
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.