PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Effect of Oxygen Staging on Nitrogen Conversion in Oxy-Fuel CFB Environment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a study on nitrogen conversion in oxy-fuel coal combustion in a pilot scale CFB 0.1 MWth facility. The paper is focused on fuel-N behaviour in the combustion chamber when the combustion process is accomplished under oxy-fuel CFB conditions. The analysis is based on infurnace sampling of flue gas and calculations of the conversion ratios of fuel-nitrogen (fuel-N) to NO, NO2, N2O, NH3 and HCN. For the tests, O2/CO2 mixtures with the oxygen content of 21 vol.% (primary gas) and with the oxygen content varied from 21 to 35 vol.% (secondary gas), were used as the fluidising gas. Measurements were carried out in 4 control points located along the combustion chamber: 0.43 m, 1.45 m, 2.50 m and 4.88 m. Results presented below indicate that an increased oxygen concentration in the higher part of the combustion chamber has strong influence on the behaviour of fuel based nitrogen compounds.
Słowa kluczowe
EN
oxy-fuel   fuel-N   CFB  
PL
Rocznik
Strony
489--496
Opis fizyczny
Bibliogr. 16 poz., rys., tab.
Twórcy
autor
  • Czestochowa University of Technology, Institute of Advanced Energy Technologies, Dabrowskiego 73, Czestochowa 42-200, Poland
autor
  • Czestochowa University of Technology, Institute of Advanced Energy Technologies, Dabrowskiego 73, Czestochowa 42-200, Poland
autor
  • Czestochowa University of Technology, Institute of Advanced Energy Technologies, Dabrowskiego 73, Czestochowa 42-200, Poland
autor
  • Czestochowa University of Technology, Institute of Advanced Energy Technologies, Dabrowskiego 73, Czestochowa 42-200, Poland
  • Czestochowa University of Technology, Institute of Advanced Energy Technologies, Dabrowskiego 73, Czestochowa 42-200, Poland
autor
  • Czestochowa University of Technology, Institute of Advanced Energy Technologies, Dabrowskiego 73, Czestochowa 42-200, Poland
Bibliografia
  • 1. Antoniades C., Christofides P.D., 2001. Studies on nonlinear dynamics and control of a tubular reactor with recycle. Nonlinear Anal. Theory Methods Appl., 47, 5933-5944. DOI: 10.1016/S0362-546X(01)00699-X.
  • 2. Basu P., Fraser S.A., 1991. Circulating fluidized bed boilers - Design and operations. Butterworth-Heinemann, Stoneham, USA, 41.
  • 3. Czakiert T., Nowak W., Muskała W., 2004. CFB oxy-combustion. Fluidization XI: Present and Future for Fluidization Engineering, Ichida, Italy, 9-14 May 2004.
  • 4. Czakiert T., Muskala W., Jankowska S., Krawczyk G., Borecki P., Jesionowski Ł., Nowak W., 2012. Combustible matter conversion in an oxy-fuel circulating fluidized-bed (CFB) environment. Energy Fuels, 26, 5437-5445. DOI: 10.1021/ef3011838.
  • 5. Eriksson T., Nuortimo K., Hotta A., Myohanen K., Hyppanen T., Pikkarainen T., 2008. Near zero CO2 emissions in coal firing with oxy-fuel CFB boiler. Proc. of the 9th International Conference on Circulating Fluidized Beds,Hamburg, Germany, May 13-16, 819-824.
  • 6. Glarborg P., Jensen A.D., Johnsson J.E. 2003. Fuel nitrogen conversion in solid fuel fired systems. Prog. Energy Combust. Sci., 29, 89-113. DOI: 10.1016/S0360-1285(02)00031-X.
  • 7. Hirma T., Hosoda A., Azuma N., 1998. Drastic reduction of NOX and N2O emission from BFBC of coal by means of CO2/O2 combustion: Effects of fuel gas recycle and coal type (C). Int. Symp. of Engineering Foundation Fluidization IX, USA.
  • 8. Lasek J.A., Janusz M., Zuwała J., Głód K., Iluk A., 2013. Oxy-fuel combustion of selected solid fuels under atmospheric and elevated pressures. Energy, 62, 105-12. DOI: 10.1016/j.energy.2013.04.079.
  • 9. Liljedahl G.N., Turek D.G., Nsakala N.Y., Monh N.C., Fout T.E., 2006. Alstom's oxygen-fired CFB technology development status for CO2 mitigation. 31st Int. Techn. Conf. on Coal Utilization and Fuel System, Clearwater, USA.
  • 10. Miller J.A., Bowman C.T., 1989. Mechanism and modeling of nitrogen chemistry in combustion. Prog. Ener. Comb. Sci., 15, 287-38. DOI: 10.1016/0360-1285(89)90017-8.
  • 11. Normann F., Andersson K., Leckner B., Johnsson F., 2009. Emission control of nitrogen oxides in the oxy-fuel process. Prog. Energy Combust. Sci., 35, 385-97. DOI: 10.1016/j.pecs.2009.04.002.
  • 12. Pawlak-Kruczek H., Ostrycharczyk M., Baranowski M., Czerep M., Zgóra J., 2013. Co-firing of biomass with pulverised coal in oxygen enriched atmosphere. Chem. Process Eng., 34, 215-26. DOI: 10.2478/cpe-2013-0018.
  • 13. Toftegaard M.B., Brix J., Jensen P.A., Glarborg P., Jensen A.D., 2010. Oxy-fuel combustion of solid fuels. Prog. Energy Combust. Sci., 36, 581-625. DOI: 10.1016/j.pecs.2010.02.001.
  • 14. Tomeczek J., Gil S., 2001. Influence of pressure on the rate of nitric oxide reduction by char. Comb. Flame, 126, 1602-06. DOI: 10.1016/S0010-2180(01)00260-7.
  • 15. Vix-Guterl C., Lahaye J., Ehrburger P., 1997. The catalytic reduction of nitric oxide by carbon monoxide over silica. Fuel, 76, 517-520. DOI: 10.1016/S0016-2361(96)00196-2.
  • 16. Williams A., Jones J.M., Ma L., Pourkashanian M., 2012. Pollutants from the combustion of solid biomass fuels. Prog. Energy Combust. Sci., 38, 113-37. DOI: 10.1016/j.pecs.2011.10.001.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8eff5463-0a0d-41b8-8dc0-e31c20f79603
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.