Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
As global urbanization flourishes, the adverse effects on the environment also incredibly increase. This urbanization leads to the evolution of construction and building materials. To meet the requirements of eco-balanced construction materials without compromising their original properties, many evolutions of concrete are in practice nowadays. One such evolution of concrete is geopolymer concrete. The objective of the current study is to produce high-strength geopolymer concrete using ground granulated blast furnace slag (GGBS), metakaolin (MK), and nano-silica (NS) in ambient-cured conditions. The influence of nano-silica in the geopolymer concrete is evaluated by workability, setting time, mechanical strength, durability properties, and microstructural analyses, which include scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and correlation analysis. In this research, the effect of nano-silica on formulating the equation for modulus of elasticity was determined. Nano-silica was replaced at a percentage of 1, 2, and 3% of the binder material. It is summarized that the molar ratios and properties of the precursor materials are the defining factors in altering the systems of geopolymer concrete. The highest strength of 89.4 MPa at 28 days of ambient-cured concrete with outstanding durability performance was achieved.
Czasopismo
Rocznik
Tom
Strony
art. no. e4, 2024
Opis fizyczny
Bibliogr. 51 poz., fot., rys., tab., wykr.
Twórcy
autor
- Division of Structural Engineering, Department of Civil Engineering, College of Engineering Guindy, Anna University, Chennai, Tamil Nadu 600025, India
autor
- Division of Structural Engineering, Department of Civil Engineering, College of Engineering Guindy, Anna University, Chennai, Tamil Nadu 600025, India
Bibliografia
- 1. Mohmmed A, Li Z, Olushola Arowolo A, Su H, Deng X, Najmuddin O, Zhang Y. Driving factors of CO2 emissions and nexus with economic growth, development and human health in the Top Tenemitting countries. Resour Conserv Recycl. 2019;148:157–69.https://doi.org/10.1016/j.resconrec.2019.03.048.
- 2. Delbeke J, Runge-Metzger A, Slingenberg Y, Werksman J. Theparis agreement. In: Towards a climate-neutral Europe curbing the trend. London: Routledge; 2019. p. 24–45.
- 3. Finkelman RB, Wolfe A, Hendryx MS. The future environmental and health impacts of coal. Energy Geosci. 2021;2:99–112.https://doi.org/10.1016/j.engeos.2020.11.001.
- 4. Ahmad J, Kontoleon KJ, Majdi A, Naqash MT, Deifalla AF, Ben Kahla N, Isleem HF, Qaidi SMA. A comprehensive review on the ground granulated blast furnace slag (GGBS) in concrete production. Sustainability. 2022;14:8783. https://doi.org/10.3390/su14148783.
- 5. El-Diadamony H, Amer AA, Sokkary TM, El-Hoseny S. Hydration and characteristics of metakaolin pozzolanic cement pastes.HBRC J. 2018;14:150–8. https://doi.org/10.1016/j.hbrcj.2015.05.005.
- 6. Hills L, Johansen V, Macgregor Miller F. Burning the mix. Int Cement Rev. 2002;79–84. https://www.cemnet.com/public/courses/srm01L1/story_content/external_files/burning-the-mix.pdf.
- 7. Hanus MJ, Harris AT. Nanotechnology innovations for the construction industry. Prog Mater Sci. 2013;58:1056–102. https://doi.org/10.1016/j.pmatsci.2013.04.001.
- 8. Gao X, Yu QL, Brouwers HJH. Characterization of alkali activated slag-fly ash blends containing nano-silica. Constr Build Mater. 2015;98:397–406. https://doi.org/10.1016/j.conbuildmat.2015.08.086.
- 9. Ravitheja A, Kiran Kumar NLN. Effect of nano-silica and GGBS on the strength properties of fly ash-based geopolymers. In: Lecture notes in civil engineering. Singapore: Springer;2019. p. 449–58.
- 10. Mustakim SM, Das SK, Mishra J, Aftab A, Alomayri TS, Assaedi HS, Kaze CR. Improvement in fresh, mechanical and microstructural properties of fly ash-blast furnace slagbased geopolymer concrete by addition of nano and microsilica. Silicon. 2021;13:2415–28. https:// doi. org/ 10. 1007/s12633-020-00593-0.
- 11. Adak D, Sarkar M, Mandal S. Structural performance of nano-silica modified fly-ash based geopolymer concrete. Constr Build Mater. 2017;135:430–9. https://doi.org/10.1016/j.conbuildmat.2016.12.111.
- 12. Rashad AM. Effect of nanoparticles on the properties of geo-polymer materials. Mag Concr Res. 2019;71(24):1283–301.https://doi.org/10.1680/jmacr.18.00289.
- 13. Liu M, Zhou Z, Zhang X, Yang X, Cheng X. The effect of nano-SiO 2 dispersed methods on mechanical properties of cement mortar. In: 5th International Conference on the Durability of Concrete Structures; 2016. p. 1–4.
- 14. Annual Book of ASTM Standards, Standard Test Method for Flow of Hydraulic Cement Mortar; 2007.
- 15. ASTM, C 143/C 143M – 03 Standard Test Method for Slump of Hydraulic-Cement Concrete; 2003.
- 16. IS 4031- Part VI, Methods of physical tests for hydraulic cement. Part 6 Determination of compressive strength of hydraulic cement other than masonry; 1988.
- 17. IS 516, Method of Tests for Strength of Concrete, Bureau of Indian Standards; 1959. p. 1–30.
- 18. American Society for Testing and Materials, Standard Test Method for Density, Absorption, and Voids in Hardened Concrete C642-97, ASTM International; 1997. p. 1–3.
- 19. Rajamane NP, Nataraja MC, Lakshmanan N, Dattatreya JK, Sabitha D. Sulphuric acid resistant ecofriendly concrete from geopolymerisation of blast furnace slag. Indian J Eng Mater Sci. 2012;19:357–67.
- 20. SANS 3001-CO3-1, Concrete durability index testing Part 1:Preparation of test specimens, South African Natl. Stand. Civ. Eng. Test Methods, 2015.
- 21. Hardjito D. Studies on fly ash-based geopolymer concrete. In: Proceedings of the world congress geopolymer, Saint Quentin, France; 2005.
- 22. Lee B, Kim G, Kim R, Cho B, Lee S, Chon C. Strength development properties of geopolymer paste and mortar with respectto amorphous Si/Al ratio of fly ash. Constr Build Mater.2017;151:512–9. https:// doi. org/ 10. 1016/j. conbu ildmat. 2017.06.078.
- 23. Mahmoodi O, Siad H, Lachemi M, Dadsetan S, Sahmaran M. Development of normal and very high strength geopolymer binders based on concrete waste at ambient environment. J Clean Prod. 2021;279: 123436. https://doi.org/10.1016/j.jclepro.2020.123436.
- 24. Deb PS, Sarker PK, Barbhuiya S. Sorptivity and acid resistance of ambient-cured geopolymer mortars containing nano-silica. Cem Concr Compos. 2016;72:235–45. https://doi.org/10.1016/j.cemconcomp.2016.06.017.
- 25. Yaseri S, Hajiaghaei G, Mohammadi F, Mahdikhani M, Farokhzad R. The role of synthesis parameters on the workability, setting and strength properties of binary binder based geopolymer paste. Constr Build Mater. 2017;157:534–45. https://doi.org/10.1016/j.conbuildmat.2017.09.102.
- 26. Zidi Z, Ltifi M, Zafar I. Synthesis and attributes of nano - SiO 2 local metakaolin based - geopolymer. J Build Eng. 2021;33:101588. https://doi.org/10.1016/j.jobe.2020.101588.
- 27. Swathi B, Vidjeapriya R. Influence of precursor materials and molar ratios on normal, high, and ultra-high performance geo-polymer concrete – a state of art review. Constr Build Mater.2023;392: 132006. https://doi.org/10.1016/j.conbuildmat.2023.132006.
- 28. De Silva P, Sirivivatnanon V. Kinetics of geopolymerization: role of Al 2 O 3 and SiO 2 . Cem Concr Res. 2007;37:512–8. https://doi.org/10.1016/j.cemconres.2007.01.003.
- 29. He P, Wang M, Fu S, Jia D, Yan S, Yuan J, Xu J, Wang P, Zhou Y. Effects of Si/Al ratio on the structure and properties of metakaolin based geopolymer. Ceram Int. 2016;42:14416–22.https://doi.org/10.1016/j.ceramint.2016.06.033.
- 30. Nuaklong P, Jongvivatsakul P, Pothisiri T, Sata V, Chindaprasirt P. Influence of rice husk ash on mechanical properties and fire resistance of recycled aggregate high-calcium fly ash geopolymer concrete. J Clean Prod. 2020;252: 119797. https://doi.org/10.1016/j.jclepro.2019.119797.
- 31. Shahrajabian F, Behfarnia K. The effects of nano particles on freeze and thaw resistance of alkali-activated slag concrete. Constr Build Mater. 2018;176:172–8. https://doi.org/10.1016/j.conbuildmat.2018.05.033.
- 32. Nath P, Sarker PK. Flexural strength and elastic modulus of ambient-cured blended low-calcium fly ash geopolymer concrete. Constr Build Mater. 2017;130:22–31. https://doi.org/10.1016/j.conbuildmat.2016.11.034.
- 33. Jagadesh P, Nagarajan V. Effect of nano titanium di oxide on mechanical properties of fly ash and ground granulated blast furnace slag based geopolymer concrete. J Build Eng. 2022;61:105235. https://doi.org/10.1016/j.jobe.2022.105235.
- 34. Bellum RR, Muniraj K, Indukuri CS, Madduru SRC. Investigation on performance enhancement of fly ash - GGBFS basedgraphene geopolymer concrete. J Build Eng. 2020;32: 101659.https://doi.org/10.1016/j.jobe.2020.101659.
- 35. Lee NK, Lee HK. Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature. Constr Build Mater. 2013;47:1201–9. https://doi.org/10.1016/j.conbuildmat.2013.05.107.
- 36. Hardjito BVRD, Wallah SE, Sumajouw DMJ. The stress-strain behaviour of fly ash-based geopolymer concrete. Dev Mech Struct Mater. 2005;35:831–4.
- 37. A. 318-19. 318-19: Building code requirements for structural concrete and commentary; 2019. https:// doi. org/ 10. 14359/51716937.
- 38. AS3600. Australian Standard for Concrete Structures, Aust. 2009;2001. p. 181.
- 39. Model code CEB-FIB 2010, n.d.
- 40. IS 456. Plain Concrete and Reinforced, Bureau of Indian Standards, Delhi; 2000. p. 1–114.
- 41. Pu S, Zhu Z, Song W, Huo W, Zhang C. A eco-friendly acidfly ash geopolymer with a higher strength. Constr Build Mater.2022;335: 127450. https://doi.org/10.1016/j.conbuildmat.2022.127450.
- 42. Nuaklong P, Sata V, Chindaprasirt P. Properties of metakaolin-high calcium fly ash geopolymer concrete containing recycled aggregate from crushed concrete specimens. Constr Build Mater. 2018;161:365–73. https://doi.org/10.1016/j.conbuildmat.2017.11.152.
- 43. Ariffin MAM, Bhutta MAR, Hussin MW, Mohd Tahir M, Aziah N. Sulfuric acid resistance of blended ash geopolymer concrete. Constr Build Mater. 2013;43:80–6. https:// doi. org/ 10. 1016/j.conbuildmat.2013.01.018.
- 44. Izzat AM, Al Bakrt AMM, Kamarudin H, Sandu AV, Ruzaidi GCM, Faheem MTM, Moga LM. Sulfuric acid attack on ordinary Portland cement and geopolymer material. Rev Chim.2013;64:1011–4.
- 45. Allahverdi A, Škvára F. Sulfuric acid attack on hardened paste of geopolymer cements part 1. Mechanism of corrosion at relatively high concentrations. Ceram Silikaty. 2005;49:225–9.
- 46. Jittin V, Madhuri P, Santhanam M, Bahurudeen A. Influence of preconditioning and curing methods on the durability performance of alkali-activated binder composites. Constr Build Mater. 2021;311: 125346. https://doi.org/10.1016/j.conbuildmat.2021.125346.
- 47. Bentz DP. A virtual rapid chloride permeability test. Cem Concr Compos. 2007;29:723–31. https://doi.org/10.1016/j.cemconcomp.2007.06.006.
- 48. Behfarnia K, Rostami M. Effects of micro and nanoparticles of SiO 2 on the permeability of alkali activated slag concrete. Constr Build Mater. 2017;131:205–13. https://doi.org/10.1016/j.conbuildmat.2016.11.070.
- 49. Law DW, Adam AA, Molyneaux TK, Patnaikuni I, Wardhono A. Long term durability properties of class F fly ash geopolymer concrete. Mater Struct Constr. 2014;48:721–31. https://doi.org/10.1617/s11527-014-0268-9.
- 50. Lee W, Wang J, Ding Y, Cheng T. A study on the characteristics and microstructures of GGBS / FA based geopolymer paste and concrete. Constr Build Mater. 2019;211:807–13. https://doi.org/10.1016/j.conbuildmat.2019.03.291.
- 51. Criado M, Fernández-Jiménez A, Palomo A. Alkali activation of fly ash: effect of the SiO2/Na2O ratio. Part I: FTIR study. Microporous Mesoporous Mater. 2007;106:180–91. https:// doi. org/ 10.1016/j.micromeso.2007.02.055.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8efadb5d-8f91-44cf-b13c-d42e43a0b16f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.