PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative analysis of humic substances of soil organic matter and liquid products from rice husks pyrolysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Agriculture has an important role in maintaining food availability. One of the most popular plant nutrition additives in agriculture is inorganic fertilizer, however, it can degrade soil health. This problem can be solved by naturally composting formed soil organic matter (SOM), of which humic substances are one of the main components. However, this process takes a very long time. Humic substances can be obtained faster through the rice husk pyrolysis process. This paper aims to study the characteristics of the humic substance from rice husk pyrolysis and understand its correlation with humic substances from SOM. Rice husk pyrolysis was performed in a fixed bed reactor at a temperature of 400, 500, and 600 ℃, weight of 10 g, and retention time of 45 min. The results show that the minimum pyrolysis temperature to obtain sufficient liquid product is 365 ℃. The liquid product from the pyrolysis process consists of two phases, water phase and tar phase. Based on its chemical properties, namely colour, solubility, organic species (functional group), acidity, hydrophilicity, carbon number, molecular weight, and carbon content, a liquid product from pyrolysis has similarities with humic substances derived from SOM, where the water phase (liquid smoke) has similarities to fulvic acid, while tar has similarities to humin. The results also suggest that pyrolysis can be a faster alternative method for producing humic substances.
Rocznik
Strony
137--152
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
  • Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Ahmad Dahlan, Jl. Jend. Ahmad Yani, Banguntapan, Bantul, Yogyakarta, 55166, Indonesia
  • Department of Industrial Engineering, Faculty of Industrial Technology, Universitas Ahmad Dahlan, Jl. Jend. Ahmad Yani, Banguntapan, Bantul, Yogyakarta, 55166, Indonesia
  • Department of Food Technology, Faculty of Industrial Technology, Universitas Ahmad Dahlan, Jl. Jend. Ahmad Yani, Banguntapan, Bantul, Yogyakarta, 55166, Indonesia
autor
  • Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Ahmad Dahlan, Jl. Jend. Ahmad Yani, Banguntapan, Bantul, Yogyakarta, 55166, Indonesia
  • Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Indonesia, Jl. Lingkar Kampus Raya, Beji, Depok, Jawa Barat, 16424, Indonesia
Bibliografia
  • 1. Adi Saputra, N., Komarayati, S., Gusmailina,, Gusmailina. (2021). Organic chemical components of five types of liquid smoke. Journal of Forest Products Research, 39(1), 39–54 (In Indonesian). https://doi.org/10.20886/jphh.2021.39.1.39-54
  • 2. Amiroh, A., Prabowo, C., Istiqomah, I., Anam, C., Qibtiyah, M., Kusumawati, D. (2022). Application of liquid smoke concentration on the growth and production of various rice varieties (Oryza sativa L.). Paspalum: Scientific Journal of Agriculture, 10(1), 86 (In Indonesian). https://doi.org/10.35138/paspalum.v10i1.360
  • 3. Buckau, G., Hooker, P., Moulin, V., Schmeide, K., Maes, A., Warwick, P., Moulin, C., Pieri, J., Bryan, N., Carlsen, L., Klotz, D., Trautmann, N. (2000). Main Conclusions of the Ec-Humics Project: Effects of Humic Substances on the Migration of Radionuclides: Complexation and Transport of Actinides, 235–260. https://doi.org/10.1016/B978-1-85573-807-2.50024-2
  • 4. Buckau, G., Wolf, M., Geyer, S., Artinger, R., Kim, J. (2002). Humic Substances: Natures Most Versatile Materials.
  • 5. Campitelli, P., Ceppi, S. (2008). Effects of composting technologies on the chemical and physicochemical properties of humic acids. Geoderma, 144(1–2), 325–333. https://doi.org/10.1016/j. geoderma.2007.12.003
  • 6. Cao, Y., Chang, Z., Wang, J., Ma, Y., Yang, H., Fu, G. (2014). Potential use of anaerobically digested manure slurry to suppress Phytophthora root rot of chilli pepper. Scientia Horticulturae, 168, 124–131. https://doi.org/10.1016/j.scienta.2013.11.004
  • 7. Davies, G., Ghabbour, E. (Eds.). (2003). Humic Substances: Nature’s Most Versatile Materials (1st ed.). Taylor & Francis. https://doi.org/10.4324/9780203487600
  • 8. Elsadek, M.A., Yousef, E.A.A. (2019). Smoke-water enhances germination and seedling growth of four horticultural crops. Plants, 8(4), 1–17. https://doi.org/10.3390/plants8040104
  • 9. Fan, H., Wang, K., Zhai, X., Hu, L. (2021). Combustion kinetics and mechanism of pre-oxidized coal with different oxygen concentrations. ACS Omega, 6(29), 19170–19182. https://doi.org/10.1021/ acsomega.1c02520
  • 10. Gamage, J., Voroney, P., Gillespie, A.W., Longstaffe, J. (2024). Chemical composition of soil humin in an organic soil profile. Applied Geochemistry, 165(February), 105954. https://doi.org/10.1016/j.apgeochem.2024.105954
  • 11. Guo, X. Xia, Liu, H. Tao, Wu, S. Biao. (2019). Humic substances developed during organic waste composting: Formation mechanisms, structural properties, and agronomic functions. Science of the Total Environment, 662, 501–510. https://doi.org/10.1016/j.scitotenv.2019.01.137
  • 12. Hayes, M.H.B., Mylotte, R., Swift, R.S. (2017). Humin: its composition and importance in soil organic matter. Advances in Agronomy 143, October. https://doi.org/10.1016/bs.agron.2017.01.001
  • 13. Istiqomah, I., Kusumawati, D.E. (2019). Effectiveness Test of Liquid Smoke from Rice Husk Waste to Control Brown Planthopper Pests in Rice Plants. Conference in Research and Community Service, 531–539 (In Indonesian).
  • 14. Istiqomah, I., Kusumawati, D.E. 2020. Potential of liquid smoke from rice husks to increase rice growth and production (Oryza sativa L.). Buana Sains, 19(2), 23 (In Indonesian). https://doi.org/10.33366/bs.v19i2.1745
  • 15. Jamilatun, S., Aziz, M., Pitoyo, J. (2023). Multi-distributed activation energy model for pyrolysis of sugarcane bagasse : modelling strategy and thermodynamic characterization. Indonesian Journal of Science & Technology, 8(3), 413–428. https://doi.org/10.17509/ijost.v8i3.60175
  • 16. Jamilatun, S., Pitoyo, J., Amelia, S., Ma, A., Hakika, D.C., Mufandi, I. (2022). Experimental study on the characterization of pyrolysis products from bagasse (Saccharum Officinarum L): Bio-oil, biochar, and gas products. Indonesian Journal of Science & Technology, 7(3), 565–582. https://doi.org/10.17509/ijost.v7i3.51566
  • 17. Jindo, K., Sonoki, T., Matsumoto, K., Canellas, L., Roig, A., Sanchez-Monedero, M.A. (2016). Influence of biochar addition on the humic substances of composting manures. Waste Management, 49, 545– 552. https://doi.org/10.1016/j.wasman.2016.01.007
  • 18. Kan, T., Strezov, V., Evans, T.J. (2016). Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renewable and Sustainable Energy Reviews, 57, 1126–1140. https://doi.org/10.1016/j.rser.2015.12.185
  • 19. Khatoon, A., Ur Rehman, S., Aslam, M.M., Jamil, M., Komatsu, S. (2020). Plant-derived smoke affects biochemical mechanism on plant growth and seed germination. International Journal of Molecular Sciences, 21(20), 1–23. https://doi.org/10.3390/ijms21207760
  • 20. Komarayati, S., Wibowo, S. (2015). Characteristics of liquid smoke from three types of bamboo. Journal of Forest Products Research, 33(2), 167–174 (In Indonesian). https://doi.org/10.20886/jphh.v33i2.824.167-174
  • 21. Nastasiienko, N., Kulik, T., Palianytsia, B., Laskin, J., Cherniavska, T., Kartel, M., Larsson, M. (2021). Catalytic pyrolysis of lignin model compounds (pyrocatechol, guaiacol, vanillic and ferulic acids) over nanoceria catalyst for biomass conversion. Applied Sciences. 11, 1–26. https://doi.org/10.3390/app11167205
  • 22. Ndzelu, B.S., Dou, S., Zhang, X., Zhang, Y., Ma, R., Liu, X. (2021). Tillage effects on humus composition and humic acid structural characteristics in soil aggregate-size fractions. Soil and Tillage Research, 213(May), 105090. https://doi.org/10.1016/j.still.2021.105090
  • 23. Ni Nyoman, R., Pandit B.V. (2008). Humic Substances: structure, function, effects and applications. Asian Journal of Water, Environment and Pollution, 5, (January 2007), 39–47. http://iospress.metapress. com/content/k104722x155k348t
  • 24. Nugraha, A., Nandiyanto, A.B.D. (2021). How to read and Interpret GC/MS Spectra. Indonesian Journal of Multidiciplinary Research, 1(2), 171– 206. https://doi.org/10.17509/ijomr.v1i2.35191
  • 25. Olivelli, M.S., Fugariu, I., Torres Sánchez, R.M., Curutchet, G., Simpson, A.J., Simpson, M.J. (2020). Unraveling mechanisms behind biomass–clay interactions using comprehensive multiphase nuclear magnetic resonance (NMR) spectroscopy. ACS Earth and Space Chemistry, 4(11), 2061–2072. https://doi.org/10.1021/acsearthspacechem.0c00215
  • 26. Patel, K., Chikkali, S.H., Sivaram, S. (2020). Ultrahigh molecular weight polyethylene: Catalysis, structure, properties, processing and applications. Progress in Polymer Science, 109, 101290. https://doi.org/ https://doi.org/10.1016/j.progpolymsci.2020.101290
  • 27. Piccolo, A., Pietramellara, G., Mbagwu, J.S.C. (1996). Effects of coal derived humic substances on water retention and structural stability of Mediterranean soils. Soil Use and Management, 12(4), 209–213. https://doi.org/ https://doi.org/10.1111/j.1475-2743.1996.tb00545
  • 28. Pitoyo, J., Jamilatun, S., Suharto, T.E. (2024). Characteristic of oil palm shell pyrolysis temperature selectivity on phenolic compound. AIP Conference Proceeding, 040002. https://doi.org/10.1063/5.0206639
  • 29. PubChem, https://pubchem.ncbi.nlm.nih.gov/
  • 30. Qin, K., Leskovar, D.I. (2020). Humic substances improve vegetable seedling quality and post‐transplant yield performance under stress conditions. Agriculture (Switzerland), 10 (7), 1–18. https://doi.org/10.3390/agriculture10070254
  • 31. Rupiasih, N.N., Pandit V. (2005). A review: Compositions, structures, properties and applications of humic substances. J. Adv. Sci. and Tech. 8. 16–25.
  • 32. Stefanidis, S.D., Kalogiannis, K.G., Iliopoulou, E.F., Michailof, C.M., Pilavachi, P.A., Lappas, A.A. (2014). A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. Journal of Analytical and Applied Pyrolysis, 105, 143–150. https://doi.org/10.1016/j. jaap.2013.10.013
  • 33. Stevenson, F.J. (1995). Humus chemistry: Genesis, composition, reactions. Journal of Chemical Education, 72(4), A93. https://doi.org/10.1021/ed072pA93.6
  • 34. Tahir, M.M., Khurshid, M., Khan, M.Z., Abbasi, M.K., Kazmi, M.H. (2011). Lignite-derived humic acid effect on growth of wheat plants in different soils. Pedosphere, 21(1), 124–131. https://doi.org/10.1016/S1002-0160(10)60087-2
  • 35. Terry, L.M., Li, C., Chew, J.J., Aqsha, A., How, B.S., Loy, A.C.M., Chin, B.L.F., Khaerudini, D.S., Hameed, N., Guan, G., Sunarso, J. (2021). Bio-oil production from pyrolysis of oil palm biomass and the upgrading technologies: A review. Carbon Resources Conversion, 4(October), 239–250. https://doi.org/10.1016/j.crcon.2021.10.002
  • 36. Tiwari, J., Ramanathan, A.L., Bauddh, K., Korstad, J. (2023). Humic substances: Structure, function and benefits for agroecosystems—a review. Pedosphere, 33(2), 237–249. https://doi.org/10.1016/j. pedsph.2022.07.008
  • 37. Vieira, F.R., Romero Luna, C.M., Arce, G.L.A.F., Ávila, I. (2020). Optimization of slow pyrolysis process parameters using a fixed bed reactor for biochar yield from rice husk. Biomass and Bioenergy, 132(November 2019). https://doi.org/10.1016/j.biombioe.2019.105412
  • 38. Wei, Y., Zhao, Y., Zhao, X., Gao, X., Zheng, Y., Zuo, H., Wei, Z. (2020). Roles of different humin and heavy-metal resistant bacteria from composting on heavy metal removal. Bioresource Technology, 296(November 2019), 122375. https://doi.org/10.1016/j.biortech.2019.122375
  • 39. Yang, H., Li, S., Liu, B., Chen, Y. (2020). Hemicellulose pyrolysis mechanism based on functional group evolutions by two-dimensional perturbation correlation infrared spectroscopy. Fuel, 267(February), 117302. https://doi.org/10.1016/j.fuel.2020.117302
  • 40. Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86, 1781–1788. https://api.semanticscholar.org/CorpusID:52101732
  • 41. Yogalakshmi, P.D., Sivashanmugam, Kavitha. (2022). Lignocellulosic biomass-based pyrolysis: A comprehensive review. Chemosphere, 286(P2), 131824. https://doi.org/10.1016/j.chemosphere.2021.131824
  • 42. Zhang, J., Chi, F., Wei, D., Zhou, B., Cai, S., Li, Y., Kuang, E., Sun, L., Li, L.-J. (2019). Impacts of Long-term Fertilization on the Molecular Structure of Humic Acid and Organic Carbon Content in Soil Aggregates in Black Soil. Scientific Reports, 9(1), 11908. https://doi.org/10.1038/s41598-019-48406-8
  • 43. Zherebker, A.Y., Kostyukevich, Y.I., Kononikhin, A.S., Nikolaev, E.N., Perminova, I.V. (2016). Molecular compositions of humic acids extracted from leonardite and lignite as determined by Fourier transform ion cyclotron resonance mass spectrometry. Mendeleev Communications, 26(5), 446–448. https://doi.org/10.1016/j.mencom.2016.09.028
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8ef726cd-2db7-4ed1-a430-9e5fa2304120
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.