Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Trees shed leaf litters throughout the year with varying intensity. In urban areas, due to the regular pruning of tree branches, the leaves which are used as a compost component have dominant share in the litterfall. The amount of nutrients released during composting depends on the abundance of the shed leaves. The research aimed to analyse and determine which of the deciduous tree species provide the highest amount of macronutrients and whether or not the heavy metals contained in them exceed the toxic level. It was found that the leaves of Alnus glutinosa (C/N = 20.57), Tilia cordata (33.31) and Fraxinus excelsior (33.88), which are the source of the highest amounts of nitrogen among the examined deciduous tree species, decompose at the fastest pace in the composting process. The process of decomposition of Quercus rubra (C/N = 64.30), Aesculus hippocastanum (58.16) and Fagus sylvatica (58.06) leaves, which are poorer in nitrogen compounds, takes much longer and is more difficult. It has also been shown that the heavy metals (Zn, Cu, Pb) contained in leaf litters do not pose any threat to the environment, as they do not exceed the permissible level of contamination.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
250--260
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
- Institute Biology and Earth Sciences, Department of Environmental Chemistry, Pomeranian University in Słupsk, ul. Arciszewskiego 22b, 76-200 Słupsk, Poland
Bibliografia
- 1. Aosaar J., Mander Ü., Varik M., Becker H., Morozov G., Maddison M., Uri V. 2016. Biomass production and nitrogen balance of naturally afforested silver birch (Betula pendula Roth.) stand in Estonia. Silva Fennica, 50(4), 1–19.
- 2. Azim K., Soudi B., Boukhari S., Perissol C., Roussos S., Thami Alami I. 2017. Composting parameters and compost quality: a literature review. Organic Agriculture. DOI: 10.1007/s13165-017-0180-z
- 3. Czyżyk R., Kozdraś M., Sieradzki T. 2002. Wartość nawozowa kompostów z osadów ściekowych i słomy. Zeszyty Problemowe Postępów Nauk Rolniczych, 484(1), 117–124.
- 4. Dąbkowska-Naskręt H., Różański S. 2009. Forms connection Pb and Zn in urban soils in Bydgoszcz. Environment Protection and Natural Research, 41, 489–496.
- 5. Diaz-Maroto I.J., Vila-Lameiro P. 2005. Seasonal evolution soil chemical properties and macronutrients in natural forests of Quercus robur L. in Galicia, Spain-Agrochimika, 49, 201–211. (in Spanish)
- 6. Diaz-Maroto I.J., Vila-Lameiro P. 2006. Litter production and composition in natural stands of Quercus Robur L. (Galicia, Spain). Polish Journal of Ecology, 54(3), 429–439.
- 7. Dorendorf J., Wilken A., Eschenbach A., Jense K. 2015. Urban-induced changes in tree leaf litter accelerate decomposition. Ecological Processes, 4(1).
- 8. Dziadowiec H. 2005. Procesy przekształceń glebowej materii organicznej. In: Badania ekologiczno-gleboznawcze, Bednarek R., Dziadowiec H., Pokojska U., Prusinkiewicz Z. (Eds.). Wyd. Nauk. PWN, Warszawa.
- 9. Enloe H.A., Lockaby B.G., Zipperer W.C., Somers G.L. 2015. Urbanization effects on leaf litter decomposition, foliar nutrient dynamics and aboveground net primary productivity in the subtropics. Urban Ecosystems. DOI: 10.1007/s11252-015-0444-x
- 10. GUS. 2020. Główny Urząd Statystyczny.
- 11. Güsewell S. 2004. N:P ratios in terrestrial plants: variation and functional significance. New Phytologist, 164, 243–266.
- 12. Hagen-Thorn A., Varnagiryte I., Nihlgård B., Armolaitis K. 2006. Autumn nutrient resorption and losses in four deciduous forest tree species. Forest Ecology and Management, 228, 33–39. https://doi.org/10.1016/j.foreco.2006.02.021
- 13. Hilty T.M., Prabha M.L. 2015. Degradation of leaf litter by composting and its effect on growth of Solanum lycopersicum. Bulletin of Advanced Scientific Research, 1(3), 93–98. www.asdpub.com/index.php/basr
- 14. Jonczak J., Jankiewicz U., Kondrat M., Kruczkowska B., Oktawa L., Oktawa J., Olejniczak I., Pawłowicz E., Polláková N., Raab T., Regulska E., Słowińska S., Sut-Lohmann M. 2020. The influence of birch trees (Betula spp.) on soil environment – A review. Forest Ecology and Management, 477, 118486.
- 15. Jonczak J., Parzych A., Sobisz Z. 2015. Decomposition of four tree species leaf litters in headwater riparian forest. Baltic Forestry, 21(1), 133–143.
- 16. Karczewska A., Kabała C. 2008. Metodyka analiz laboratoryjnych gleb i roślin. Uniwersytet Przyrodniczy we Wrocławiu, 4. http://www.ar.wroc.pl/~kabala
- 17. Koerseman W., Meuleman A.F.M. 1996. The vegetation N:P ratio: a new tool to detect the nature of nature limitation. Journal of Applied Ecology, 33, 1441–1450.
- 18. Komilis D., Ham R.K. 2003. The effect of lignin and sugars to the aerobic decomposition of solid waste. Waste Management, 23, 419–423.
- 19. Krauss H., Wilcke W., Zech W. 2000. Reactivity and bioavailability of PAHs and PCBs urban soils of Beyreuth. In: Proceedings First International Conference Soils of Urban, Industrial, Traffic and Mining Areas. (Eds) W. Burghardt and C. Dornauf, Essen, 12–18, 657–661.
- 20. Law N.L., Band L.E., Grove J.M. 2004. Nitrogen input from residential lawn care practices in suburban watersheds in Baltimore County, MD. Journal of Environmental Planning and Management, 47, 737–755.
- 21. Malzahn E. 2002. Igły sosny zwyczajnej jako bioindykator zagrożeń środowiska leśnego Puszczy Białowieskiej. Biuletyn Monitoringu Przyrody, 1(3).
- 22. Małek S., Wężyk P., Nowak W. 2000. A quantitative and qualitative analysis of litterfall in beech stands on monitoring plots in the Ojców National Park and the Forest Experimental Station in Krynica in the years 1996–1998. [In] Monitoring of processes occurring in beech stands in the changing environmental conditions on the example of the Ojców National Park and the Forest Experimantal Station in Krynica. Kraków-Stary Sącz, 93–112.
- 23. McGroddy M.E., Daufresne T., Hedin L.D. 2004. Scaling of C:N:P stochiometry in forests worldwide: implications of terrestrial redfield – type ratios. The Ecological Society of America, 85(9), 2390–2401.
- 24. Ostrowska A., Porębska G. 2002. Skład chemiczny roślin, jego interpretacja i wykorzystanie w ochronie środowiska. Instytut Ochrony Środowiska, Warszawa.
- 25. Parzych A., Trojanowski J. 2009. The structure and dynamics of litterfall in forest stands in the Słowiński National Park in 2003–2005. Forest Research Papers, 70(1), 41–48.
- 26. Parzych A., Trojanowski J., Sobisz Z. 2010. Accumulation and retranslocation of nitrogen and phosphorus compounds in the foliage of Pinus sylvestris L. and Betula pubescens in the Sloviński National Park (Northern Poland). Baltic Coastal Zone, 14, 57–74.
- 27. Prądzyńska D., Śmielak Ł. 2009. Spatial structure of green urban areas in Słupsk. Słupskie Prace Geograficzne, 6, 207–214.
- 28. Prescott C.E., Vesterdal L., Preston C.M., Simard S.W. 2004. Influence of initial chemistry on decomposition of foliar litter in contrasting forest types in British Columbia. Canadian Journal of Forest Research, 34, 1714–1729.
- 29. Raport. 2020. Raport o stanie środowiska w województwie pomorskim w roku 2020. Biblioteka Monitoringu Środowiska, Gdańsk 2021.
- 30. Seyedbagher M. 2010. Compost: Production, quality, and use in commercial agriculture. University of Idaho, College of Agricultural and Life Sciences CIS, 1175.
- 31. Silva G.T.A., Matos L.V., Nobrega P.O., Campello E.F.C., Resende A.S. 2008. Chemical composition and decomposition rate of plants used as green manure. Scientia Agricola, 65(3), 298–305.
- 32. Stachurski A., Zimka J.R. 2004. Obieg pierwiastków w ekosystemach lądowych. Kosmos, 54, 391–400.
- 33. Sut-Lohmann M., Jonczak J., Parzych A., Šimanský V., Polláková N., Raab T. 2020. Accumulation of airborne potentially toxic elements in Pinus sylvestris L. bark collected in three Central European medium-sized cities. Ecotoxicologya and Environmental Safety, 200, 110758.
- 34. Templer P.H., Toll J.W., Hutyra L.R., Raciti S.M. 2015. Nitrogen and carbon export from urban areas through removal and export of litterfall. Environmental Pollution, 197, 256–261.
- 35. Townsend A.R., Cleveland C.C., Asner G.P., Bustamante M.M.C. 2006. Controls over foliar N:P ratios in tropical rain forest. Ecology, 107–118.
- 36. Wołoszyk C. 2003. Agrochemiczna ocena nawożenia kompostami z komunalnych osadów ściekowych i odpadami przemysłowymi. AR w Szczecinie, Rozprawy, 217
- 37. Yamamoto M., Fukushima M. 2014. Humification index of composts originating from three types of woody biomass. Journal of Material Cycles Waste Management, 16, 731–738.
- 38. Yulipriyanto H. 2001. Emission d’effluents gazeux lors du compostage de substrats organiques en relation avec l’activité microbiologique (Nitrification/ Dénitrification). Dissertation, University Rennes. https://tel. archivesouvertes. fr/tel-00654701/document (Accessed 10 November 2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8ef2bf20-ab2d-48a9-97ed-77e19232ced0