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GEOMETRIC PROPERTIES OF
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Abstract. This paper is related to the classic but still being examined issue of
approximation of functions by polynomials with integer coefficients. Let r, n be positive
integers with n ≥ 6r. Let P n ∩ M r be the space of polynomials of degree at most n
on [0, 1] with integer coefficients such that P (k)(0)/k! and P (k)(1)/k! are integers for
k = 0, . . . , r − 1 and let P Z

n ∩ M r be the additive group of polynomials with integer
coefficients. We explore the problem of estimating the minimal distance of elements of
P Z

n ∩ M r from P n ∩ M r in L2(0, 1). We give rather precise quantitative estimations
for successive minima of P Z

n in certain specific cases. At the end, we study properties
of the shortest polynomials in some hyperplane in P n ∩ M r.
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1. INTRODUCTION

The paper presents the idea of examining approximation problems by polynomials
with integer coefficients in the context of lattices. Its importance results from, among
other things, connections with such areas of the number theory as Diophantine
approximations. There are considered the elements of algebraic integer rings instead
of the coefficients taken from Z.

Throughout the work, by an integer polynomial, we mean a polynomial with integer
coefficients.

Results regarding the approximation of functions by integer polynomials were
initiated by Pál in 1914 [8]. Pál proved that a continuous real-valued function on the
interval [−α, α] with α ∈ (0, 1) can be uniformly approximated by polynomials with
integer coefficients if and only if f(0) is integer number.

In 1923 Okada in [7] expanded the Pál’s assertion to the case α ∈ [1, 2) demonstrat-
ing that if there exists a polynomial X ∈ Z[x] satisfying the condition ∥X∥[−α,α] < 1
then the function f ∈ C[−α, α] can be uniformly approximated by polynomials with
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integer coefficients if and only if f(xj) = 0, for xj ∈ X−1({0}) ∩ [α, α]. Okada also
proved the existence of such polynomials P . In the same year, Fekete independently
received a more precise result. His proof was later simplified by Aparicio in 1955.
It turned out that the smaller the degree of the polynomial X is then the function f
must meet fewer conditions so that it can be approximated by integer polynomials.

In 1925 Chlodovski in a fairly simple way showed that if [a, b] ⊂ (0, 1) and
f ∈ C[a, b] then dist[a,b](f,Z[x]) = 0. The border case, when the Chlodovski’s result
cannot be applied, is interval [0, 1].

In 1931 the following result of L. Kantorovich [5] appeared: a continuous function
f : [0, 1] → R can be uniformly approximated by polynomials with integer coefficients
if and only if f(0), f(1) ∈ Z. The necessity of the condition is obvious. The sufficiency
is a consequence of Okada’s Theorem.

We expand the function f to an even function f̃ ∈ C[−1, 1]. We subtract from f the
polynomial p(x) = (f(1)−f(0))x2 +f(0) ∈ Z and next we apply the Okada’s Theorem
to function f̃ −p. Conversely, assuming that f ∈ C[−1, 1] satisfies f(−1), f(0), f(1) ∈ Z
and f(1) ≡ f(−1) mod 2 then

f(x) = f0(x) + f1(x), fi(x) = f(x) + (−1)if(−x)
2 , f1(x) = xf̃1(x),

where f0(x) and f̃1(x) are even and f0(
√

x), f̃1(
√

x) ∈ C[0, 1] take integer values on
the ends of the interval. These functions are approximated by integer polynomials and
further, we construct the approximations of function f . Kantorovich showed somewhat
more, namely, using the assumption f(0) = f(1) = 0 he obtained

EZ
n(f) ≤ 2En(f) + 1/n,

where En(f) and EZ
n(f) are distances f from the space consisting of polynomi-

als with real (resp. integer) coefficients of degree at least n. The proof lies in the
fact that polynomial Pn of the best approximation was replaced by the polynomial
P̃n =

∑n−1
k=1 akxk(1 − x)k and the coefficients ak were replaced by [ak]. So one can see

that the key role is played by the distance of the polynomial P ∈ Pn (n ≥ 2) satisfying
P (0) = P (1) = 0 of polynomial Pn of similar properties. The result of Okada was
adapted by Aparicio to the case of polynomial approximation of the function from
Lp[a, b]: if b − a < 4 for any function of Lp[a, b] we can approximate (in the norm Lp)
by integer polynomials.

Since polynomials are dense in Lp[a, b] it is enough to prove that every polynomial
can be approximated in Lp[a, b]. This leads to the following question: let P be a poly-
nomial of degree at most n; how well P can be approximated by integer polynomials
of degree at most n?

In the sequel, we shall restrict our considerations to the special case [a, b] = [0, 1].
We can give quite precise and less complicated estimations in this case. Most appli-
cations of the polynomial approximations concern the [0, 1] interval, which is still
under investigation. For example, they are considered applied in searching minimal
polynomials, Chebyshev’s constant the optimum.

We assume that m, n, r are non-negative integers. We denote by P n the space
of polynomials of degree n on the interval [0, 1] with the established norm (in this
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paper we consider uniform or Euclidean norm). Let P Z
n be the additive subgroup of

the space P n consisting of polynomials with integer coefficients. Let M r be the space
of all polynomials divisible by the polynomial xr(1 − x)r. When n ≤ 2r − 1, then
P n ∩ M r = {0}, therefore, we will still to assume that n ≥ 2r. Let us denote

γr,n := max
P ∈P n∩Hr

d(P, P Z
n).

In other words, γr,n is covering radius of the lattice P Z
n ∩ M r with norm Lp(0, 1).

Our question concerning the accuracy of the approximation level can be stated as
follows: what are the values of γr,n? Responding to our question Kantorovich [5]
obtained the inequalityγr,n ≤ 1/2n for the uniform norm. Trigub [9] observed, that
γr,n ≍ 1/n2, but in his work he did not provide the proof. In the first section we
compiled some basic facts about estimations of γr,n with the uniform and Euclidean
norm. We get in this case good estimations for covering radius. This leads to the
following question: what is the geometric lattice structure, if there is a good base?

The geometry of the base of our lattice can be quite complex in terms of the length
of the generating elements. It is therefore reasonable to ask how can one choose a good
basis consisting of almost orthogonal vectors, that have short lengths. We will ask for
further estimations of the generating elements. The objective of our paper is to show
estimations of the norms of subsequent generators of the selected lattice. We will give
estimates of subsequent norms (lattice minima) for even and odd numbers.

Results of Section 2 will be used to estimate some metric values in the lattice
P Z

n∩M r. By E (resp. by F ) we will denote the subspace of P consisting of polynomials
P such that P (1 − x) = P (x) (resp. P (1 − x) = −P (x)). For all r the space P n ∩ M r

can be written in the form of orthogonal direct sum
(P n ∩ M r ∩ E) ⊕ (P n ∩ M r ∩ F ).

Suppose that n is an even number, n = 2m. Polynomials xi(1 − x)i (r ≤ i ≤ m)
(r = 0, 1, . . . , m) are the basis of the lattice P Z

n ∩ M r ∩ E. Similarly, for
r = 0, 1, . . . , m − 1 polynomials (2x − 1)xi(1 − x)i, r ≤ i ≤ m − 1 are the basis
of the lattice P Z

n ∩ M r ∩ F . But they aren’t good bases, because the norms of
projections on the approximate coordinates can have big values. Note that

(P Z
n ∩ M r ∩ E) ⊕ (P Z

n ∩ M r ∩ F ) ⊊ P Z
n ∩ M r.

On the other hand
P Z

n ∩ M r ⊊
1
2

[
(P Z

n ∩ M r ∩ E) ⊕ (P Z
n ∩ M r ∩ F )

]
.

It appears that in lattice P Z
n ∩ E we can find the base S1, . . . , Sm+1 such that,

span {Sr+1, . . . , Sm+1} = P n ∩ M r ∩ E, 0 ≤ r ≤ m.

The polynomial Sr is almost orthogonal to the subspace P n ∩ M r ∩ E for r ≲ m/3.
Similarly, for P Z

n ∩ F we can find the base T1, . . . , Tm such that
span {Tr+1, . . . , Tm} = P n ∩ M r ∩ F , 0 ≤ r ≤ m − 1,

wherein the polynomial Tr is almost orthogonal to the subspace P n ∩ M r ∩ F for
r ≲ m/3.
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Let us note here that there is a polynomial S1 ∈ P Z
n ∩ E orthogonal to the

subspace P n ∩ M1 ∩ E. Similarly, there is a polynomial T1 ∈ P Z
n ∩ F orthogonal to

the subspace P n ∩ M1 ∩ F . We will search these polynomials in Section 4.
Let us consider now

Φn,r : P n ∩ E 7→ Xn,r := (P n ∩ E)/(P n ∩ M r ∩ E).

The set Ln,r := Φ(P Z
n ∩ E) is the lattice in Euclidean space Xn,r. Our considerations

will imply (being imprecise), that when r is a small company to n, the images of
polynomials xi(1−x)i (0 ≤ i ≤ r−1) are the basis of the lattice Ln,r composed of almost
orthogonal vectors. The lattice Ln,r can be represented as an almost orthogonal direct
sum of one-dimensional subgroups.

We can therefore study the structure of the above lattice, considering the estimation
of subsequent lattice minima. We then get some idea of the geometry of the lattice.

This paper is organized as follows. In Section 2 we discuss the basic properties and
definitions related to the concept of a lattice. In this section, we also present specific
examples of lattices together with a determination of the values of the covering radius
and subsequent lattice minima. Section 3 contains estimations of the covering radius in
the case of a lattice of polynomials with integer coefficients. In Section 4 we study the
properties of the lattice of polynomials in the L2 norm. We also determine the explicit
form of the polynomial constituting the last generator of the lattice. The main result
of this paper is Theorem 4.9 with a double estimation for the norms of subsequent
generators of lattice along with the value of the covering radius. Finally, we consider
some polynomials and the properties of their roots, presenting results of numerical
computations and some conclusions in Section 5.

2. LATTICE

We shall treat X as an n-dimensional space with the norm ∥ · ∥p, as the usual norm
in Lp, 1 ≤ p ≤ ∞. By dp(f, P ) we denote the corresponding distance of a function
f ∈ Lp from a subset P ⊂ Lp. The closed unit ball in X will be denoted by BX . By
a lattice L in X we mean a non-zero finite dimensional discrete additive subgroup
of X. Given a lattice L, by µ(L; X) we denote its covering radius:

µ(L; X) := max
x∈spanL

d(x, L).

In other words, the covering radius of a lattice is the minimal r such that any point in
space is within distance at most r from the lattice. Let Y = spanL and dim Y = m.
The quantities

λi (L; X) := min{s > 0 : (L ∩ sBY ) ≥ i}, i = 1, . . . , m,

are called the successive minima of L. By the definition of λi (L; X), all lattice
points inside the open ball B(0; λi (L; X)) are contained in some (i − 1)-dimensional
hyperplane. The first minimum lattice λ1 (L; X) is the length of the shortest non-zero
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vector of lattice L. To simplify the notation, we shall write µ(L) and λi (L) instead of
µ(L; X) and λi (L; X), respectively.

We can consider how to easily estimate the radius covering a given lattice and to
what extent we can expect an estimation for subsequent lattice minima.
Lemma 2.1. Let L be the lattice in X (dimL = n) with the norm ∥ · ∥, M = span L
and u ∈ X \ M . Then

L̃ = L + Zu ≡ {v + ku : v ∈ L and k ∈ Z}

is the lattice in X (dimL̃ = n + 1). Let us denote h = d(u, M). Then
1
2 h ≤ µ(L̃) ≤ 1

2 h + µ(L) (2.1)

and
h ≤ λn+1(L̃) ≤ max {h + µ(L), λn(L)} . (2.2)

If X is Euclidean space we can write the inequalities (2.1) and (2.2) as

1
2 h ≤ µ(L̃) ≤

√
1
4 h2 + [µ(L)]2 (2.3)

and
h ≤ λn+1(L̃) ≤ max

{√
h2 + [µ(L)]2, λn(L)

}
. (2.4)

The proof is based of the standard arguments. By a lattice in C[0, 1] we mean an
additive subgroup generated by a finite number of linearly independent vectors. It is
not to hard to see if n ≥ 2r, then P Z

n ∩ M r is a lattice generated by the Bernstein
polynomials

xk(1 − x)r, k = r, . . . , n − r,

hence it follows that P n ∩ M r = span(P Z
n ∩ M r).

For simplicity of notation we write µ(P Z
n ∩ M r; L∞), λi(P Z

n ∩ M r; L∞) for the
uniform norm and we denote by µ(P Z

n ∩ M r; L2), λi(P Z
n ∩ M r; L2) the covering

radius for the L2(0, 1). When we approximate polynomial in P n ∩ M r by elements of
P Z

n ∩ M r then µ(P Z
n ∩ M r; L∞), µ(P Z

n ∩ M r; L2) are maximal errors.
In the following two examples, we can see what the values of the covering radius

and subsequent lattice minima look like (in a specific case).
Example 2.2. Let X = C[0, 1] and V1(x) = 1, V2(x) = x. It is not hard to see that
V1, V2 is a basis of the lattice P Z

1 . In this case

λ1

(
P Z

1 ; L2

)
= λ2

(
P Z

1 ; L2

)
=

√
3

3 ≈ 0.58, µ
(

P Z
1 ; L2

)
= 1

3 .

The shortest non-zero elements of the lattice (the first minimum) are the vertices of
a regular hexagon. The first and second minimum are achieved at least among for
polynomials

2V2(x) − V1(x) = W0(x) = (2x − 1), V2(x) = x.
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Example 2.3. Let X = C[0, 1] and U1(x) = x(1 − x), V (x) = x2(1 − x) be a basis of
the lattice P Z

3 ∩ M1. The shortest non-zero elements of the lattice (the first minimum)
are the vertices regular hexagon (see Example 2.2). In this case

λ1

(
P Z

3 ∩ M1; L2

)
= 1√

210
≈ 0.069,

for polynomials ±W1(x) and

λ2

(
P Z

3 ∩ M1; L2

)
= 1√

105
≈ 0.097,

for polynomial V (x) = x2(1 − x). In case of covering radius we obtain

µ
(

P Z
3 ∩ M1; L2

)
=

√
30

105 ≈ 0.052.

3. APPROXIMATION BY POLYNOMIALS
WITH INTEGER COEFFICIENTS IN L∞(0, 1)

Let r, n (n ≥ 2r + 3) be non-negative integers. Then

γr,n ≤ µ(P Z
n ∩ M r; L∞). (3.1)

The detailed proof can be found in [6]. It is easy to check that

µ(P Z
n ∩ M r; L∞) ≤ 1

2

(
n

r

)−1
. (3.2)

The proof of the above inequality given by Kantorovich [5] used the fact that the
polynomials xk(1 − x)n−k, where 1 ≤ k ≤ n − 1, form a basic of the lattice P Z

n ∩ M1,
and was based on an estimation which may be written in the form

µ(P Z
n ∩ M r; L∞) <

1
2 max

x∈[0,1]

n−r∑

k=r

xk(1 − x)n−k <
1
2

(
n

r

)−1
.

For the proofs we refer the reader to [6]. The estimation obtained in the inequality
(3.2) cannot be improved by this method. It is easy to check that

max
x∈[0,1]

n−r∑

k=r

xk(1 − x)n−k ≥ n−r(1 − 1/n)n−r.

Lemma 3.1. Let r ∈ N and let n ≥ 2r + 3. Then

µ
(

P Z
n ∩ M r; L∞

)
≤ 1

2 d (Ur, P n−1 ∩ M r+1) + µ
(

P Z
n ∩ M r+1; L∞

)
,

where Ur(x) = xr(1 − x)r, r = 1, 2, . . .
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For the proofs we refer the reader again to [6]. Let n ≥ 6r. According to Lemma 3.1
we can prove that

µ
(

P Z
n ∩ M r; L∞

)
< C1 · Cr

2 · r2r+1/2

n2r
, (3.3)

where C1, C2 are some numeric constants. One may take C1 = 2
√

π + 1, C2 = 16. On
the other hand, let f be the linear functional on (P n, ∥·∥∞) given by f(P ) = P (r)(0)/r!.
For any P ∈ P Z

n we can write

1
2 ≤

∣∣∣∣f
(

1
2Ur

)
− f(P )

∣∣∣∣ ≤ ∥f∥ · ∥1
2Ur − P∥∞.

So we get
µ

(
P Z

n ∩ M r; L∞
)

≥ d∞

(
1
2Ur, P Z

n ∩ M r

)
≥ ∥f∥−1.

If P ∈ P n, then, by the Markov inequality,

|P (r)(0)| ≤ 2r · n2(n2 − 12) . . . (n2 − (r − 1)2)
1 · 3 · 5 . . . (2r − 1) ∥P∥∞.

It is easy to check that (according to Stirling’s formula)

∥f∥ <
1

2π1/2 · e2r

r2r+1/2 .

Finally, we obtain

µ
(

P Z
n ∩ M r; L∞

)
> c1 · cr

2 · r2r+1/2

n2r
, (3.4)

taking e.g. c1 =
√

π, c2 = e−2. The detailed proof is in [6]. Fix r ∈ N. From the above
one gets γr,n ≍ n−2r as n → ∞. From Lemma 3 in [9] it follows that γr,n = O(n−r).
The results of [9] allow to obtain the bound γr,n = O(n−2r), but don’t give more
precise estimations of the form (3.3) and (3.4).

4. APPROXIMATION BY POLYNOMIALS
WITH INTEGER COEFFICIENTS IN L2(0, 1)

Let r, n (n ≥ 2r + 4) be non-negative integers and a, b ∈ R. In this section, we will
consider the lattice P Z

n ∩ M r with the Euclidean norm. Banaszczyk and Lipnicki
proved in [1]) the following inequalities

√
2

4
Cr

n2r+1
(
1 + O(n−1)

)
≤ µ

(
P Z

n ∩ M2r; L2

)
≤

√
2

2
Cr

n2r+1
(
1 + O(n−1)

)
,

as n → ∞. We consider in more detail the geometry of the lattice P Z
n ∩ M2r ∩ E

(resp. P Z
n ∩ M2r ∩ F ). Let us denote

H(a, b; n, r) := {P ∈ P n ∩ M r : P (r)(0) = a, P (r)(1) = b}.

Then by R(a, b; n, r) we denote the shortest polynomial in the hyperplane H(a, b; n, r).
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Lemma 4.1. Let s1, s2, . . . , sk, a ∈ R and u1, u2, . . . , uk be a sequence of the orthogonal
system in unit space and let K =

∑k
i=1 ∥ui∥−2

2 . Then

min
s1+...+sk=a

∥s1u1 + . . . + skuk∥2
2 = a2K−1,

for
si = a

∥ui∥2
2

· K−1, i = 1, . . . , k.

Corollary 4.2. Let a, b, s1, s2, . . . , sk, t1, t2, . . . , tl ∈ R and u1, u2, . . . , uk, v1, . . . , vl

be a sequence of orthogonal system in unit space. Then

min
s1+...+sk=a,t1+...+tl=b

∥s1u1 + . . . + skuk + t1v1 + . . . + tlvl∥2
2 = a2K−1 + b2L−1,

for
si = a

∥ui∥2
2

· K−1, tj = b

∥vj∥2
2

· L−1, i = 1, . . . , k, j = 1, . . . , l,

where

K =
k∑

i=1

1
∥ui∥2

2
, L =

l∑

j=1

1
∥vj∥2

2
.

Let n ∈ N0. By Pn we denote the following Legendre polynomials on interval [0, 1]:

Pn(x) = 1
n! · dn (xn(x − 1)n)

dxn
. (4.1)

Each Legendre polynomial Pn(x) is an nth-degree polynomial.
Lemma 4.3. Let n ∈ N be an even number. Then

R(a, b; n, 0) = a + b

2 · 2
(n + 1)(n + 2)

n/2∑

i=0
(4i + 1)P2i

+ b − a

2 · 2
(n + 1)(n + 2)

n/2∑

i=1
(4i − 1)P2i−1

and
∥R(a, b; n, 0)∥2

2 =
(

a + b

2

)2
· 2

(n + 1)(n + 2) +
(

b − a

2

)2
· 2

n(n + 1) .

Proof. Let us take arbitrary P ∈ P n. We may write

P = t0P0 + t1P1 + . . . + tnPn,

for some t0, . . . , tn ∈ R. By assumption Pi(0) = (−1)i, Pi(1) = 1 (i = 0, 1, . . . , n, ).
Therefore P ∈ H(a, b; n, 0) if and only if

t0 + t2 + t4 + . . . + tn = a + b

2 , (4.2)

t1 + t3 + . . . + tn−1 = b − a

2 . (4.3)
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In this way, our problem is reduced to minimize the expression

∥t0P0 + t1P1 + . . . + tnPn∥2
2,

if equality holds in (4.2)–(4.3). By Corollary 4.2, we get

t2i = a + b

2 · 1
∥P2i∥2

2




n/2∑

j=0

1
∥P2j∥2

2




−1

, i = 0, 1, . . . , n/2,

t2i−1 = b − a

2 · 1
∥P2i−1∥2

2




n/2∑

j=1

1
∥P2j−1∥2

2




−1

, i = 1, . . . , n/2.

This gives

∥t0P0 + t1P1 + . . . + tnPn∥2
2 =

(
a + b

2

)2
·




n/2∑

j=0

1
∥P2j∥2

2




−1

+
(

b − a

2

)2
·




n/2∑

j=1

1
∥P2j−1∥2

2




−1

.

From the equality

∥Pi∥2
2 = 1

2i + 1 , i ∈ N0,

we can see that

n/2∑

j=0

1
∥P2j∥2

2
=

n/2∑

j=0
(4j + 1) = 1

2(n + 1)(n + 2).

By a similar argument, we have

n/2∑

j=0

1
∥P2j−1∥2

2
=

n/2∑

j=1
(4j − 1) = 1

2n(n + 1).

We conclude from the above that

t2i = a + b

2 · (4i + 1) · 2
(n + 1)(n + 2) , i = 0, 1, . . . , n/2,

t2i−1 = b − a

2 · (4i − 1) · 2
n(n + 1) , i = 1, . . . , n/2.
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Finally, from the above we obtain

R(a, b; n, 0) = a + b

2 · 2
(n + 1)(n + 2) ·

n/2∑

i=0
(4i + 1)P2i

+ b − a

2 · 2
(n + 1)(n + 2)

n/2∑

i=1
(4i − 1)P2i−1

and

∥R(a, b; n, 0)∥2
2 =

(
a + b

2

)2
· 2

(n + 1)(n + 2) +
(

b − a

2

)2
· 2

n(n + 1) .

In a special case for a = ±1 and b = 1 we get simpler form

R(a, b; n, 0) = a + b

2 R(1, 1; n, 0) + b − a

2 R(−1, 1; n, 0),

where

R(1, 1; n, 0) = 2
(n + 1)(n + 2)

n/2∑

i=0
(4i + 1)P2i, (4.4)

R(−1, 1; n, 0) = 2
n(n + 1)

n/2∑

i=0
(4i − 1)P2i−1.

According to Lemma 4.3 we obtain

∥R(1, 1; n, 0)∥2
2 = 2

(n + 1)(n + 2) , (4.5)

∥R(−1, 1; n, 0)∥2
2 = ∥R(1, −1; n, 0)∥2

2 = 2
n(n + 1) . (4.6)

Lemma 4.4. Let n ∈ N be an odd number. Then

R(a, b; n, 0) = a + b

2 · 2
n(n + 1)

(n−1)/2∑

i=0
(4i + 1)P2i

+ b − a

2 · 2
(n + 1)(n + 2)

(n+1)/2∑

i=1
(4i − 1)P2i−1

and

∥R(a, b; n, 0)∥2
2 =

(
a + b

2

)2
· 2

n(n + 2) +
(

b − a

2

)2
· 2

(n + 1)(n + 2) .

The proof is analogous to that of Lemma 4.3. In a special case, we get

R(a, b; n, 0) = a + b

2 R(1, 1; n, 0) + b − a

2 R(−1, 1; n, 0),
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where

R(1, 1; n, 0) = 2
n(n + 1)

(n−1)/2∑

i=0
(4i + 1)P2i, (4.7)

R(−1, 1; n, 0) = 2
(n + 1)(n + 2)

(n+1)/2∑

i=1
(4i − 1)P2i−1. (4.8)

According to Lemma 4.4 we obtain

∥R(1, 1; n, 0)∥2
2 = 2

n(n + 1) , (4.9)

∥R(−1, 1; n, 0)∥2
2 = ∥R(1, −1; n, 0)∥2

2 = 2
(n + 1)(n + 2) . (4.10)

It is clear that the determination of the form of polynomials by this method is quite
time-consuming. We find the form of the polynomial R in special cases by applying
some different method.

Using the previous lemmas, we will find the exact form of the minimal polynomial
for a given lattice. In the case of Theorems 4.6 and 4.7, we will prove that the indicated
polynomial form satisfies the assumptions of the last minimum for the selected lattice.
We will divide the considerations into two cases – for even and odd numbers.
Theorem 4.5. Let m, r be non-negative integers and m ≥ r + 2. Then

R(r!, r!; 2m, r) = (2m − 2r + 1)!(2r + 1)! ·
r+1∑

k=1

P
(k−1)
r (0)

(2m + 2k + 1)! · P
(k)
2m+k+1.

Proof. Let us denote

Sr,m = RE(r!; 2m, r) = r!RE(1, 1; 2m, r) = R(r!, r!; 2m, r) = r!R(1, 1; 2m, r),

where 0 ≤ r ≤ m. By the definition,

∥Sr,m∥ = α(2m, r) = d2(Ur, P 2m ∩ M r+1).

Next, we can see that

S0,m = 1
2m(2m + 1)

d

dx
P2m+1(x)

and

Sr,m = sr,m,1P
′
2m+1 + sr,m,2P

′′
2m+2 + . . . + sr,m,r+1P

(r+1)
2m+r+1 =

r+1∑

k=1
sr,m,kP

(k)
2m+k.

And now

sr,m,k = ar,k

(2m − 2r + 1) · . . . · (2m + 2k) = (2m − 2r)!
(2m + 2k)! · ar,k, k = 1, . . . , r + 1.
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We determined ar,k from the system of equations

ar,1 + ar,2
2! + ar,3

3! + . . . + ar,r+1
(r + 1)! = 0,

ar,1
2! + ar,2

3! + ar,3
4! + . . . + ar,r+1

(r + 2)! = 0,

ar,1
3! + ar,2

4! + ar,3
5! + . . . + ar,r+1

(r + 3)! = 0,

ar,1
r! + ar,2

(r + 1)! + ar,3
(r + 2)! + . . . + ar,r+1

(2r + 1)! = (−1)rr!.

It is easy to see that

∆r = (−1)r(r+1)/2 · 2!3! · . . . · r!
(r + 1)!(r + 2)! · . . . (2r + 1)! .

It follows that
ar,k = (−1)r−k+1 · (r + k − 1)!

(r − k + 1)! · (2r + 1)!
(k − 1)! .

Obviously

Sr,m = (−1)r+1(2m − 2r)!(2r + 1)! ·
r+1∑

k=1
(−1)k · (r + k − 1)!

(r − k + 1)! · P
(k)
2m+k

(2m + k)!(k − 1)!

or

Sr,m = (2m − 2r + 1)!(2r + 1)! ·
r+1∑

k=1

P
(k−1)
r (0)

(2m + 2k + 1)! · P
(k)
2m+k+1.

It is easy to check that for r ≥ 1 the polynomial R(1, 1; n, r) does not need to have
integer coefficients.

However, in our situation, we will see that our polynomial will have integer
coefficients. For this reason, we will find an estimation for the value of the last minimum
in the lattice. There hold the following two theorems (Theorems 4.6 and 4.7).

Theorem 4.6. Let n ∈ N be an even number. Then R(1, 1; n, 0) ∈ P Z
n ∩ E.

Proof. Let n ∈ N be an even number. The main idea of the proof is to take
R(1, 1; n, 0)(k)(0)/k! ∈ Z, for k = 0, 1, . . . , n. It is not hard to see that

P
(k)
i (0) = (−1)i+k · (i + k)!

k!(i − k)! , k = 0, 1, . . . , i,

for i = 0, 1, . . . , n. According to formula (4.4) let us write

R(1, 1; n, 0) = 2
(n + 1)(n + 2)

n/2∑

i=0
(4i + 1)P2i.
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This gives

R(1, 1; n, 0)(k)(0) = 2
(n + 1)(n + 2)

n/2∑

i=[k/2]

(4i + 1)(−1)k+2i · (k + 2i)!
k!(2i − k)! .

Then

R(1, 1; n, 0)(k)(0)

= 2
(n + 1)(n + 2) · (−1)k

k!

n/2∑

i=[k/2]

(4i + 1)(2i − k + 1)(2i − k + 2) · . . . · (2i + k).

(4.11)

Next, we have

n/2∑

i=[k/2]

(4i + 1)(2i − k + 1)(2i − k + 2) · . . . · (2i + k)

= 1
2(k + 1)(n − k + 1)(n − k + 2) · . . . · (n + k + 2),

which is a standard calculation. We can write the equation (4.11) as

R(1, 1; n, 0)(k)(0) = (−1)k · k! · 1
k + 1 ·

(
n

k

)
·
(

n + k + 2
k

)
.

This proves that

R(1, 1; n, 0)(k)(0)
k! = (−1)k · 1

k + 1 ·
(

n

k

)
·
(

n + k + 2
k

)
.

It is easy to check that
1

k + 1

(
n

k

)(
n + k + 2

k

)
∈ Z.

We obtain a similar situation in the case of odd values of index n. In this situation,
our polynomial R(−1, 1; n, 0) will also be the best choice for the last minimum of the
lattice (the last lattice generator).

Theorem 4.7. Let n ≥ 3 be an odd number. Then R(−1, 1; n, 0) ∈ P Z
n ∩ F .

Proof. The proof is analogous to that of Theorem 4.6.

The situation described in Theorems 4.6 and 4.7 is quite unique. It is easy to check
that for r ≥ 1 the polynomial R(1, 1; n, r) doesn’t need to have integer coefficients.
The last theorems show a part of the natural geometry of the lattice P Z

n ∩ E (resp.
P Z

n ∩ F ). In the case of the lattice P Z
n ∩ E we have the polynomial R(1, 1; n, 0) (the

minimal polynomial), which is the first orthogonal one to the subspace P n ∩ M1 ∩ E.
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Proposition 4.8. Let n ≥ 6 be an even number. Then the value of ∥R(1, 1; n, 0)∥2
is the last minimum of the lattice P Z

n ∩ E.
Proof. Now we have to know that the value of the covering radius of the lattice lattice
P Z

n ∩ M1 ∩ E is smaller than the value of ∥R(1, 1, n, 0)∥2. For every even number
n ≥ 6 there is the following inequality

µ
(

P Z
n ∩ M1 ∩ E; L2

)
<

2
n2 . (4.12)

From the Theorem 4.6 we have R(1, 1; n, 0) ∈ P Z
n ∩ E. Next, from (4.6) we get

∥R(1, 1; n, 0)∥2 =
√

2
(n + 1)(n + 2) . (4.13)

The polynomial R(1, 1; n, 0) is orthogonal to P n ∩ M1. According to (4.13) we have

µ
(

P Z
n ∩ M1 ∩ E; L2

)
<

2
n2 .

According to Lemma 2.1 we can write

λn/2(P Z
n ∩ M1 ∩ E; L2) <

4
n2 .

From the above and from (4.13) we get

λn/2(P Z
n ∩ M1 ∩ E; L2) < ∥R(1, 1; n, 0)∥2.

It follows that

λn/2+1(P Z
n ∩ E; L2) = ∥R(1, 1; n, 0)∥2 =

√
2

(n + 1)(n + 2) . (4.14)

Let us denote
α(2m, r) := d2(Ur, P 2m ∩ M r+1),

β(2m − 1, r) := d2(Wr, P 2m−1 ∩ M r+1).

Based on the above considerations, we can estimate the norms of subsequent
generators of our lattice along with the value of the covering radius. We obtain
the following results (for even and odd numbers, respectively):
Theorem 4.9. Let m ≥ 1. Then

λm+1

(
P Z

2m ∩ E; L2

)
= α(2m, 0) (4.15)

and
α2 (2m, m − i + 1) ≤ λ2

i

(
P Z

2m ∩ E; L2

)
≤

m∑

k=m−i+1
α2(2m, k), (4.16)

for i = ⌊m/3⌋, . . . , m.
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Proof. Our proof starts with the observation that from (4.14) we get (4.15). From
Lemma 2.1 we have

α2 (2m, m − i + 1) ≤ λ2
i

(
P Z

2m ∩ E; L2

)

and
λ2

i

(
P Z

2m ∩ E; L2

)
≤

m∑

k=m−i+1
α2(2m, k).

This gives (4.16).

Theorem 4.10. Let m ≥ 1. Then

λm+1

(
P Z

2m−1 ∩ F ; L2

)
= β(2m − 1, 0),

and

β2 (2m − 1, m − i) ≤ λ2
i

(
P Z

2m−1 ∩ F ; L2

)
≤

m−1∑

k=m−i

β2(2m − 1, k),

for i = ⌊m/3⌋, . . . , m − 1.
Proof. The proof is analogous to that of Theorem 4.9.

5. EXAMPLES

In this section, we study the properties of shortest polynomials R(−1, 1; n, 0) and
R(1, 1; n, 0) in the context of their roots. We only took into account the polynomials
for odd n ∈ N, as in the even case properties are analogous.

First, we present the polynomials R(−1, 1; n, 0) for n ∈ {1, 3, 5, 7, 9}, based on the
recursive form (charts of all these polynomials are presented in Figure 1):

R(−1, 1; 1, 0) = P1 = 2x − 1,

R(−1, 1; 3, 0) = 1
10(3R(−1, 1; 1, 0) + 7P3)

= 14x3 − 21x2 + 9x − 1,

R(−1, 1; 5, 0) = 1
21(10R(−1, 1; 3, 0) + 11P5)

= 132x5 − 330x4 + 300x3 − 120x2 + 20x − 1,

R(−1, 1; 7, 0) = 1
36(21R(−1, 1; 5, 0) + 15P7)

= 1430x7 − 5005x6 + 7007x5 − 5005x4 + 1925x3 − 385x2

+ 35x − 1,

R(−1, 1; 9, 0) = 1
55(36R(−1, 1; 7, 0) + 19P9)

= 16796x9 − 75582x8 + 143208x7 − 148512x6 + 91728x5

− 34398x4 + 7644x3 − 936x2 + 54x − 1.
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1
R(-1,1;1,0)
R(-1,1;3,0)
R(-1,1;5,0)
R(-1,1;7,0)
R(-1,1;9,0)

Fig. 1. Graphs of polynomials R(−1, 1; n, 0)

Next, we present the first 5 polynomials R(1, 1; n, 0) that have roots (obviously,
polynomial R(1, 1; 1, 0) = P0 = 1 has no roots), based on the recursive form (charts of
all these polynomials are presented in Figure 2):

R(1, 1; 3, 0) = 1
6(R(1, 1; 1, 0) + 5P2) = 5x2 − 5x + 1,

R(1, 1; 5, 0) = 1
15(6R(1, 1; 3, 0) + 9P4)

= 42x4 − 84x3 + 56x2 − 14x + 1,

R(1, 1; 7, 0) = 1
28(15R(1, 1; 5, 0) + 13P6)

= 429x6 − 1287x5 + 1485x4 − 825x3 + 225x2 − 27x + 1,

R(1, 1; 9, 0) = 1
45(28R(1, 1; 7, 0) + 17P8) = 4862x8 − 19448x7 + 32032x6

− 28028x5 + 14014x4 − 4004x3 + 616x2 − 44x + 1,

R(1, 1; 11, 0) = 1
66(45R(1, 1; 9, 0) + 21P10)

= 184756x10 − 923780x9 + 1969110x8 − 2333760x7 + 1681680x6

− 756756x5 + 210210x4 − 34320x3 + 2970x2 − 110x + 1.
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0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1
R(1,1;3,0)
R(1,1;5,0)
R(1,1;7,0)
R(1,1;9,0)
R(1,1;11,0)

Fig. 2. Graphs of polynomials R(1, 1; n, 0)

Now, we briefly describe the numerical tests performed using the classical
Newton–Raphson method, which has the following iterative form:

xk+1 = xk − f(xk)
f ′(xk) , k = 0, 1, 2, . . .

where f denotes a given polynomial (i.e. R(−1, 1; n, 0) or R(1, 1; n, 0)) and f ′ is the
usual derivative of this polynomial.

To find roots of polynomials R(−1, 1; n, 0) and R(1, 1; n, 0) we used the code written
in C++ with double precision. We performed computations with the equidistant
starting points x0 = i · 0.1 for i = 0, . . . , 10 to find all the roots located inside the
interval [0, 1]. For R(1, 1; 11, 0) we had to perform two additional calculations to
achieve really all its roots. At the time we used starting points 0.05 and 0.95. We didn’t
perform obviously the calculations for R(−1, 1; 1, 0) as it is linear and has only one
root 0.5.

All results are presented in Tables 1 and 2, where Nit denotes the number of
performed iterations to satisfy the stopping criterion

|xk+1 − xk| < 10−12.

Moreover, “−” denotes that the calculations were not performed, and
“×” – a failure that occurs when the starting point was a point of local extremum.
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Insights into computational experiments:

– there are no problems with the numerical approximating of all roots of the tested
polynomials, if we use appropriate starting points, i.e. if the starting points are
selected densely enough;

– the convergence of the Newton–Raphson method is slower than in the general case,
as a more detailed study indicates that it is slightly slower than quadratic (we
omit the detailed estimations);

– the Newton–Raphson method doesn’t work if starting point is a point of local
extremum (see Theorem 2.6 of [2] - local convergence theorem) and it works
noticeably slower if the starting point is close to a point of local extremum, first of
all, x0 = 0.3, 0.7 for R(−1, 1; 3, 0), x0 = 0.4, 0.6 for R(−1, 1; 5, 0) and x0 = 0.1, 0.9
for R(−1, 1; 7, 0) in Table 1 or x0 = 0.2, 0.8 for R(1, 1; 5, 0) and for R(1, 1; 9, 0) in
Table 2.

Insights into properties of the roots of considered polynomials R(−1, 1; n, 0) and
R(1, 1; n, 0):

— all roots are real numbers, i.e. these polynomials don’t have complex roots;
— the roots are located symmetrically with respect to the center 0.5 (obviously, inside

the interval [0, 1]), wherein they have a wider spacing near the center, and are
closer together near the endpoints of the interval [0, 1];

— the higher degree of the polynomial, the more densely the roots are located near
the endpoints of [0, 1];

— the sum of all roots of a given polynomial is always equal to half of the degree of
this polynomial;

— the product of all roots of a given polynomial is always equal to the inverse of its
leading coefficient.
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