Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article presents the effect of the addition of polymer to mortars with CEMI and its influence on durability under conditions of sulfuric acid or nitric and sulphur bacteria or nitrogen (nitrification and denitrification). Both acids corresponds to the products of metabolism of bacteria Acidithiobacillus thiooxidans and Thiobacillus denitrificans, Paracoccus denitrificans by the literature is about 0.15 mmol/dm3. The changes in tightness materials studied by determining moisture mass and absorption. Corrosion processes were identified by examination in a scanning microscope equipped with an X-ray microanalyzer and a mercury porosimeter. The research results presented showed that the solution has a significantly weaker effect on the composite cement and cement-polymer compared with the action of bacteria. The action of both environments caused two opposing processes: unsealing the structure and deposition of corrosion products.
Rocznik
Tom
Strony
591--596
Opis fizyczny
Bibliogr. 27 poz., rys., wykr., tab.
Twórcy
autor
- Institute of Building Materials and Structures, PK Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland
autor
- Institute of Building Materials and Structures, PK Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland
Bibliografia
- [1] S. Okabe, H. Satoh, and Y. Watanbe, “In situ analysis of nitrifying biofilms as determined by in situ hybridization and the use of microelectrodes”, Appl. Environ. Microbiol. 65 (7), 3182–3191 (1999).
- [2] T. Warscheid and J. Braams, “Biodeterioration of stone: a review”, Int. Biodeterioration and Biodegradation 46 (4), 343–368 (2000).
- [3] Ma. Guadalupe, D. Gutiérrez-Padilla, A. Bielefeldt, S. Ovtchinnikov, M. Hernandez, and J. Silverstein, “Biogenic sulfuric acid attack on different types of commercially produced concrete sewer pipes”, Cem. Concr. Res. 40 (2), 293–301 (2010).
- [4] W. Sand, “Importance of hydrogen sulfide, thiosulfate, and methylmercaptan for growth of thiobacilli during simulation of concrete corrosion”, Appl. Environ. Microbiol. 53 (7), 1645–1648 (1987).
- [5] A. Leemann, B. Lothenbach, H. Siegrist, and C. Hoffmann, “Influence of water hardness on concrete surface deterioration caused by nitrifying biofilms in wastewater treatment plants”, Int. Biodeterioration and Biodegradation 64 (6), 489–498 (2010).
- [6] D. Nica, J.L. Davis, L. Kirby, G. Zuo, and D.J. Roberts, “Isolation and characterization of microorganisms involved in the biodeterioration of concrete in sewers”, Int. Biodeterioration and Biodegradation 46 (1), 61–68 (2000).
- [7] E. Vincke, N. Boon, and W. Verstraete, “Analysis of the microbial communities on corroded concrete sewer pipes - a case study”, Appl. Microbiol. Biotechnol. 57, 776–785 (2001).
- [8] M. O’Connell, C. McNally, and M.G. Richardson, “Biochemical attack on concrete in wastewater applications: a state of the art review”, Cem. Concr. Compos. 32 (7), 479–485 (2010).
- [9] B. Cwalina, “Stone and concrete corrosion induced by microorganisms”, Corrosion Protection 1, 17–23 (2004), (in Polish).
- [10] K. Eriksen, “Thaumasite attack on concrete at Marbjerg waterworks”, Cem. Concr. Compos. 25 (8), 1147–1150 (2003).
- [11] D. Jana and R.A. Lewis, “Acid attack in a concrete sewer pipe – a petrographic and chemical investigation”, Proc. 27th Int. Conf. Cement Microscopy, ICMA 1, CD-ROM (2005).
- [12] H.B. Dionisi, A.C. Layton, G. Harms, I.R. Gregory, K.G. Robinson, and G.S. Sayler, “Quantification of Nitrosomonas oligotropha-like ammonia oxidizing bacteria and Nitrospira spp. from full-scale wastewater treatment plants by competitive PCR”, Appl. Environ. Microbiol. 68 (1), 245–253 (2002).
- [13] W. Gujer, “Nitrification and me – a subjective review”, Water Research 44 (1), 1–19 (2010).
- [14] P. Łukowski and G. Adamczewski, “Self-repairing of polymer-cement concrete”, Bull. Pol. Ac.: Tech. 61 (1), 195–200 (2013).
- [15] J. Monteny, E. Vincke, A. Beeldens, N. De Belie, L. Taerwe, D. Van Gemert, and W. Verstraete, “Chemical, microbiological, and in situ test methods for biogenic sulfuric acid corrosion of concrete”, Cem. Concr. Res. 30 (4), 623–634 (2000).
- [16] L. Czarnecki and P. Łukowski, “Polymer-cement concretes”, Lime Cement Concrete 5, 243–258 (2010), (in Polish).
- [17] M. Fiertak and E. Stanaszek-Tomal, “Durability of polymer-modified cement materials exposed to activated sludge in sewage treatment plants”, Corrosion Protection 55 (6), 266–268 (2012), (in Polish).
- [18] PN-EN ISO 12570:2002, “Hygrothermal performance of building materials and products – Determination of moisture content by drying at elevated temperature”, 2002.
- [19] PN-B-04500:1985P, “Mortars – research of physical and mechanical characteristic”, 1985.
- [20] K. Rakesh and B. Bhattacharjee, “Study on some factors affecting the results in the use of MIP method in concrete research”, Cem. Concr. Res. 33, 417–424 (2003).
- [21] K. Rakesh and B. Bhattacharjee, “Assessment of permeation quality of concrete through mercury intrusion porosimetry”, Cem. Concr. Res. 34, 321–328 (2004).
- [22] J.W. Costerton, Z. Lewandowski, D. DeBeer, D.E. Caldwell, D.R. Korber, and G. James, “Biofilms, the customized microniche”, J. Bacteriol. 176 (8), 2137–2142 (1994).
- [23] J.W. Costerton, Z. Lewandowski, D.E. Caldwell, D.R. Korber, and H.M. Lappin-Scott, “Microbial biofilms”, Annu. Rev. Microbiol. 49, 711–745 (1995).
- [24] J. Chandra, G. Zhou, and M.A. Channoum, “Fungal biofilms and actimycotics”, Curr. Drug Targets 8, 887–894 (2005).
- [25] C.R Currie, “A community of ants, fungi, and bacteria: a multilateral approach to studying symbiosis”, Annu. Rev. Microbiol. 55, 357–380 (2001).
- [26] R.D. Monds and G.A. O’Tool, “The developmental model of microbial biofilms: Ten years of a paradigm up for review”, Trends Microbiol. 17 (2), 73–87 (2009).
- [27] L. Czarnecki and P. Woyciechowski, “Prediction of the reinforced concrete structure durability under the risk of carbonation and chloride aggression”, Bull. Pol. Ac.: Tech. 61 (1), 173–181 (2013).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8ef0bb38-6ab3-4fab-9bbc-49c0555fe081