PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Factors influencing temporal changes in chemical composition of biogenic deposits in the middle Tążyna River Valley (Kuyavian Lakeland, central Poland)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present paper discusses the influence of geochemical properties on biogenic deposits in the Wilkostowo mire near Toruń, central Poland. The analysed core has allowed the documentation of environmental changes between the older part of the Atlantic Period and the present day (probably interrupted at the turn of the Meso- and Neoholocene). In order to reconstruct the main stages in the sedimentation of biogenic deposits, we have used stratigraphic variability of selected litho-geochemical elements (organic matter, calcium carbonate, biogenic and terrigenous silica, macro- and micro-elements: Na, K, Mg, Ca, Fe, Mn, Cu, Zn, Pb, Cr and Ni). The main litho-geochemical component is CaCO3; its content ranges from 4.1 per cent to 92 per cent. The variability of CaCO3 content reflects mainly changes in hydrological and geomorphological conditions within the catchment area. The effects of prehistoric anthropogenic activities in the catchment of the River Tążyna, e.g., the use of saline water for economic purposes, are recorded in a change from calcareous gyttja into detritus-calcareous gyttja sedimentation and an increased content of lithophilous elements (Na, K, Mg and Ni) in the sediments. Principal component analysis (PCA) has enabled the distinction the most important factors that affected the chemical composition of sediments at the Wilkostowo site, i.e., mechanical and chemical denudation processes in the catchment, changes in redox conditions, bioaccumulation of selected elements and human activity. Sediments of the Wilkostowo mire are located in the direct vicinity of an archaeological site, where traces of intensive settlement dating back to the Neolithic have been documented. The settlement phase is recorded both in lithology and geochemical properties of biogenic deposits which fill the reservoir formed at the bottom of the Parchania Canal Valley.
Czasopismo
Rocznik
Strony
121--136
Opis fizyczny
Bibliogr. 78 poz.
Twórcy
autor
  • Pedagogical University of Cracow, Institute of Geography, Podchorążych 2, 30-084 Kraków, Poland
autor
  • University of Łódź, Archaeology Institute, Uniwersytecka 3, 90-137 Łódź, Poland
  • University of Szczecin, Geology and Palaeogeography Unit, Faculty of Geosciences, Mickiewicza 18, 70-383 Szczecin, Poland
autor
  • University of Łódź, Institute of Earth Science, Department of Geomorphology and Palaeogeography, Narutowicza 88, 90-139 Łódź, Poland
autor
  • University of Łódź, Institute of Earth Science, Department of Geomorphology and Palaeogeography, Narutowicza 88, 90-139 Łódź, Poland
autor
  • University of Lódź, Institute of Earth Science, Laboratory of Geology, Narutowicza 88, 90-139 Łódź, Poland
autor
  • University of Szczecin, Geology and Palaeogeography Unit, Faculty of Geosciences, Mickiewicza 18, 70-383 Szczecin, Poland
Bibliografia
  • Aaby, B., 1986. Palaeoecological studies of mires. [In:] B.E. Berglund (Ed.): Handbook of Holocene Palaeoecology and Palaeohydrology. John Wiley & Sons, Chichester, 145–165.
  • Andrzejewski, L., 1995. Genesis of the fluvial system of the lower Vistula river based on the selected side valleys. Geographical Studies, Special Issue 6, 139–156.
  • Andrzejewski, L. & Weckwerth, P., 2010. Dunes of the Toruń Basin against palaeogeographical conditions of the Late Glacial and Holocene. Ecological Questions 12, 9–15.
  • Apolinarska, K., Woszczyk, M. & Obremska, M., 2012. Late Weichselian and Holocene palaeoenvironmental changes in northern Poland based on the Lake Skrzynka record. Boreas 41, 292–307.
  • Birch, L., Hanselmann, K.W. & Bachofen, R., 1996. Heavy metal conservation in Lake Cadagno sediments: historical records of anthropogenic emissions in a meromitic alpine lake. Water Research 30, 3, 679–687.
  • Błaszkiewicz, M., 2007. Geneza i ewolucja mis jeziornych na młodoglacjalnym obszarze Polski – wybrane problemy [The origin and evolution of recesses of lakes upper Vistulian glaciated area on Polish territory – selected problems]. Studia Limnologica et Telmatologica 1, 1, 5–16.
  • Bogucki, P., Nalepka, D., Grygiel, R. & Nowaczyk, B., 2012. Multiproxy environmental archaeology of Neolithic settlements at Osłonki, Poland, 5500–4000 BC. Environmental Archaeology 17, 1, 45–65.
  • Bojakowska, I. & Lech, D., 2008. Zróżnicowanie zawartości pierwiastków śladowych w torfach występujących na obszarze Polski [Variance of trace elements contents in peats occurred in Poland area]. Zeszyty Naukowe Politechniki Śląskiej, Seria Górnictwo 285, 31–41.
  • Bronk Ramsey, C., 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360.
  • Chambers, F.M. & Charman, D.J., 2004. Holocene environmental change: contributions from the peatland archive. The Holocene 14, 1–6.
  • Cieśla, W., Dąbkowska-Naskręt, H., Długosz, J. & Zalewski, W., 1994. Evaluation of microelements contents in arable soils of eastern Wielkopolska Lowland. Soil Science Annual 44, 79–84.
  • Cohen, A.S., 2003. Paleolimnology: The History and Evolution of Lake Systems. Oxford University Press, 528 pp.
  • Czerwiński, Z., 1996. Zasolenie wód i gleb na terenie Kujaw [Salinity of waters and soils in the Kujawy region]. Roczniki Gleboznawcze 47, 3–4, 131–143.
  • Davison, W., Woof, C. & Rigg, E., 1982. The dynamic of iron and manganese in seasonal anoxic lake; direct measurements of fluxes using sediments traps. Limnology and Oceanography 27, 6, 987–1003.
  • Dąbkowska-Naskręt, H., Długosz, J., Jaworska, H., Kobierski, M., Malczyk, P., Bartkowiak, A. & Różański, S., 2006. Variability of zinc content in surface horizons of soils from the Eastern Part of the Wielkopolska Lake District. Polish Journal of Environmental Studies, 15(2A): 52–55.
  • Dean, W.E., 1999. The carbon cycle and biogeochemical dynamics in lake sediments. Journal of Paleolimnology 21, 375–393.
  • Dittrich, M. & Koschel, R., 2002. Interactions between calcite precipitation (natural and artificial) and phosphorus cycle in the hardwater lake. Hydrobiologia 468, 1, 49–57.
  • Domańska, L., Forysiak, J., Rzepecki, S. & Twardy, J., 2013. The TRB culture settlement in the Middle Tążyna Valley: a case study. [In:] S. Kadrow & P. Włodarczak (Eds): Environment and subsistence – forty years after Janusz Kruk’s “Settlement studies…”. Studien zur Archäologie in Ostmitteleuropa 11, 105–116.
  • Drzymulska, D., 2016. Peat decomposition – shaping factors, significance in environmental studies and methods of determination; a literature review. Geologos 22, 61–69.
  • Emerson, S., 1978. Early diagenesis in anaerobic lake sediments – II. Thermodynamic and kinetic factors controlling the formation of iron phosphate. Geochimica Cosmochimica Acta 42, 1307–1316.
  • Fiałkiewicz-Kozieł, B., Smieja-Król, B. & Palowski, B., 2011. Heavy metal accumulation in two peat bogs from Southern Poland. Studia Quaternaria 28, 17–24.
  • Fortescue, J.A.C., 1980. Environmental geochemistry. A holistic approach. Springer-Verlag, New York, 347 pp.
  • Gorham, E. & Swaine, D.J., 1965. The influence of oxiding and reducing conditions upon the distribution of some elements in lake sediments. Limnology and Oceanography 10, 2, 268–279.
  • Goździk, J., 1995. A permafrost evolution and its impact on some depositional conditions between 20 and 10 ka in Poland. Biuletyn Peryglacjalny 34, 53–72.
  • Granina, L., Müller, B. & Wehrli, B., 2004. Origin and dynamics of Fe and Mn sedimentary layers in Lake Baikal. Chemical Geology 205, 55–72.
  • Hammer, O., Harper, D.A.T., Ryan, P.D., 2001. PAST: Paleontological Statistics software package for education and data analysis. Palaeontologia Electronica 4, 1–9.
  • Heiri, O., Lotter, A.F., & Lemcke, G., 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments, reproducibility and comparability of results. Journal of Paleolimnology 25, 101–110.
  • Hulisz, P., 2007. Propozycja systematyki gleb zasolonych występujących w Polsce [Proposal of systematic of Polish salt-affected soils]. Roczniki Gleboznawcze 58, 121–129.
  • Jankowski, M., 2002. Buried soils in the dunes of the Toruń Basin. [In:] B. Manikowska, K. Konecka-Betley & R. Bednarek (Eds): Paleopedology problems in Poland. Łódzkie Towarzystwo Naukowe, Łódź, 233–252.
  • Jones, B.F. & Bowser, C.J., 1978. The mineralogy and related chemistry of lake sediments. [In:] A. Lerman (Ed.): Lakes: Chemistry, Geology, Physics. Springer-Verlag, Berlin, 179–236.
  • Kabata-Pendias, A., 2011. Trace elements in soils and Plants. Fourth edition. CRC Press, Boca Raton, 505 pp.
  • Kalis, A.J., Merkt, J. & Wunderlic, J., 2003. Environmental changes during the Holocene climatic optimum in central Europe – human impact and natural causes. Quaternary Science Review 22, 33–79.
  • Karasiewicz, M.T., Hulisz, P., Noryśkiewicz, A.M., Krześlak, I. & Świtoniak, M., 2014. The record of hydroclimatic changes in the sediments of kettle-hole in a Young glacial landscape (north-central Poland). Quaternary International 328–329, 264–276.
  • Krygowski, B., 1961. Physical geography of the Great Poland Lowland. P. I. Geomorphology. Poznańskie Towarzystwo Przyjaciół Nauki, Poznań, 1–203.
  • Landner, L. & Reuther, R., 2004. Metals in Society and in the Environment. A Critical Review of Current Knowledge on Fluxes, Speciation, Bioavailability and Risk for Adverse Effects of Cooper, Chromium, Nickel and Zinc. Kluwer Academic Publishers, 407 pp.
  • Last, W., 2001. Mineralogical analysis of lake sediments. [In:] W.M. Last & J.P. Smol (Eds): Tracking environmental change using lake sediments. Vol. 2. Physical and geochemical methods. Kluwer Academic Publishers, 143–187.
  • Legendre, P. & Birks, H.J.B., 2012. From classical to canonical ordination. [In:] H.J.B. Birks, A.F. Lotter, S. Juggins & J.P. Smol (Eds): Tracking Environmental Change using Lake Sediments. Vol. 5. Data handing and numerical techniques. Springer, Dordrecht, 201–248.
  • Liss, P.S., 1976. Conservative and non-conservative behaviour of dissolved constituents during estuarine mixing. [In:] J.D. Burton & P.S. Liss (Eds): Estuarine chemistry. Academic Press, London, 93–130.
  • Łącka, B., Starnawska, E., Kuźniarski, M. & Chróst, L., 1998. Mineralogy and geochemistry of the Lake Gościąż Holocene sediments. [In:] M. Ralska-Jasiewiczowa, T. Goslar, T. Madeyska & L. Starkel (Eds): Lake Gościąż, Central Poland. A monography study. Part 1. W. Szafer Institute of Botany, Polish Academy of Sciences, 196–202.
  • Mackereth, F.J.H., 1965. Chemical investigation of lake sediments and their interpretation. Proceedings of the Royal Society of London, Series B, Biological Sciences 161, 984, 295–309.
  • Mangiamelli, P., Chen, S.K. & West, D., 1996. A comparison of SOM neural network and hierarchical clustering methods. European Journal of Operational Research 93, 402–417.
  • Markowski, S., 1980. Struktura i właściwości podtorfowych osadów jeziornych rozprzestrzenionych na Pomorzu Zachodnim jako podstawa ich rozpoznawania i klasyfikacji [Structure and properties of lacustrine depostis dispersed in the Western Pomerania as a basis for their recognition and classification]. Kreda jeziorna i gytie. Vol. 2. Poznańskie Towarzystwo Przyjaciół Nauk o Ziemi, Gorzów–Zielona Góra, 44–55.
  • Marks, L., 2005. Pleistocene glacial limits in the territory of Poland. Przegląd Geologiczny 53, 988–993.
  • Martínez Cortizas, A., López-Merino, L., Bindler, R., Mighall, T. & Kylander, M.E., 2016. Early atmospheric metal pollution provides evidence for Chalcolithic/Bronze Age mining and metallurgy in Southwestern Europe. Science of the Total Environment 545/546, 398–406.
  • Mazurek, M., Dobrowolski, R. & Osadowski, Z., 2014. Geochemistry of deposits from spring-fed fens in West Pomerania (Poland) and its significance for palaeoenvironmental reconstruction. Géomorphologie: relief, processus, envirionment 4, 323–342.
  • Michczyńska, D., Starkel, L., Nalepka, D. & Pazdur, A., 2013. Hydrological changes after the last ice retreat in Northern Poland using radiocarbon dating. Radiocarbon 55, 2–3, 1712–1723.
  • Minyuk, P.S., Borkhodoev, V.Y. & Wennrich, V., 2014. Inorganic geochemistry data from Lake El’gygytgyn sediments: marine isotope stages 6–11. Climate of the Past 10, 467–485.
  • Nalepka, D., 2005. Late Glacial and Holocene Paleoecological Conditions and changes of vegetation cover under early farming activity in the South Kujawy Region (Central Poland). Acta Palaeobotanica, Supplement 6, 3–90.
  • Nalepka, D., 2008. Late Glacial and Holocene history of vegetation at Osłonki (Kujawy, Central Poland). Folia Quaternaria 78, 33–44.
  • Niewiarowski, W., Pasierbski, A. & Tomczak, A., 1976. Mapa geologiczna Polski w skali 1:200 000, arkusz Toruń [Geological Map of Poland, 1: 200 000, sheet Toruń]. Wydawnictwa Geologiczne, Warszawa.
  • Nowaczyk, B., 2008. Changes in natural environment in the vicinity of Osłonki (Kujawy, Central Poland) in the light of geological and geomorphological investigations. Folia Quaternaria 78, 7–32.
  • Pawlikowski, M., 2015. Results of mineralogical and technological study of pottery and daub. [In:] S. Rzepecki (Ed.): Wilkostowo 23/24: a neolithic settlement in Kuyavia, Poland c. 3500 BC. Studien zur Archäologie in Ostmitteleuropa 15, 405–422.
  • Pawłowski, D., Milecka, K., Kittel, P., Woszczyk, M. & Spychalski, W., 2015. Palaeocological record of natural changes and human impact in small river valley in Central Poland. Quaternary International 370, 12–28.
  • Poborski, J., Prochazka, K. & Wala, A., 1956. Sole potasowo-magnezowe w złożach Inowrocławia i Wapna [Potassium-magnesium salts in Inowrocław and Wapno]. Acta Geologica Polonica 6, 4, 337–370.
  • Poepperl, R., Kluge, W., Schernewski, G., Garbe-Shonberg, C.D. & Nellen, W., 2001. Spatial and Temporal Variability of Limnological Processes. [In:] J.D. Tenhunen, R. Lenz & R. Hantschel (Eds): Ecosystem Approaches to Landscape Management in Central Europe. Ecological Studies 147, 117–162.
  • Ralska-Jasiewiczowa, M., van Geel, B. & Demske, D., 1998. Holocene regional vegetation history recorded in the Lake Gościąż sediments [In:] M. Ralska-Jasiewiczowa, T. Goslar, T. Madeyska & L. Starkel (Eds): Lake Gościąż, Central Poland. A monography study. P. 1. W. Szafer Institute of Botany, Polish Academy of Sciences, 202–219.
  • Ralska-Jasiewiczowa, M. & van Geel, B., 1998. Human impact on the vegetation of the Lake Gościąż surroundings in Prehistoric and Early-Historic Times. [In:] M. Ralska-Jasiewiczowa, T. Goslar, T. Madeyska & L. Starkel (Eds): Lake Gościąż, Central Poland. A monography study. P. 1. W. Szafer Institute of Botany, Polish Academy of Sciences, 267–294.
  • Reimann, C., Arnoldussen, A., Boyd, R., Finne, T.E., Koller, F., Nordgulen, Ø. & Englmaier, P., 2007. Element contents in leaves of four plant species (birch, mountain ash, fern and spruce) along antropogenic and geogenic concentration gradients. Science of Total Environment 377: 416–433.
  • Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Cheng, H., Edwards, R.L., Friedrich, M., Groots, P.M., Guilderson, T.P., Haflidason, H., Hajdas, I., Hatte, C., Heaton, T.J., Hoffmann, D.L., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., Manning, S.W., Niu, M., Reimer, R.W., Richards, D.A., Scott, E.M., Southon, J.R., Turney, C.S.M. & van der Plicht, J., 2013. IntCal13 and Marine13 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 55, 4, 1869–1887.
  • Rutkowski, J., Król, K. & Szczepańska, J., 2007. Lithology of the profundal sediments in Słupiańska Bay (Wigry Lake, NE Poland) – introduction to interdisciplinary study. Geochronometria 27, 47–52.
  • Rösch, M. & Lechterbeck, J., 2016. Seven Millennia of human impacts as reflected in a high resolution pollen profile from the profundal sediments of Litzelsee, Lake Constance region, Germany. Vegetation History and Archeobotany (in press) (http://dx.doi.org/10.1007/s00334.015.0552.9).
  • Rydelek, P., 2013. Origin and composition of mineral constituents of fen peats from eastern Poland. Journal of Plant Nutrition 36, 911–98.
  • Rzepecki, S. (Ed.), 2015. Wilkostowo 23/24: a neolithic settlement in Kuyavia, Poland c. 3500 BC. Studien zur Archäologie in Ostmitteleuropa 15, 487 pp.
  • Rzepecki, S., Obremska, M., Twardy, J., Forysiak, J. & Okupny, D., 2015. Stanowisko Przybranówek. Zapis neolitycznej antropopresji w świetle analiz środowiskowych, materiałów archeologicznych i palinologicznych badań rdzenia z bagna „Katarzyna” [Przybranówek site. The record of Neolithic anthropogenic according to the analysis of environment al, archaeological material and palynological studies of the core the peatland „Katarzyna”]. [In:] D. Dzieduszyńska & M. Roman (Eds): Dynamika zmian roślinności Niżu Polskiego w dobie późoglacjalnych zmian klimatu i narastania antropopresji w holocenie [Dynamics of changes in vegetation Polish Lowland in an late glacial period of climate change and human pressure rise in the Holocene]. Łódź, 75–79.
  • Schettler, G., Romer, R.L., O’Connell, M. & Molloy, K., 2006. Holocene climatic variations and postglacial sea-level rise geochemically recorded in the sediments of the brakish karst lake An Loch Mór, western Ireland. Boreas 35, 674–693.
  • Schnurrenberger, D., Russell, J. & Kelts, K., 2003. Classification of lacustrine sediments based on sedimentary components. Journal of Paleolimnology 29, 141–154.
  • Stumm, W., 2003. Chemical processes regulating the composition of lake waters. [In:] P.E. O’ Sullivan & C.S. Revnolds (Eds): The Lakes Handbook. Limnology and Limnetic Ecology. Blackwell, 79–106.
  • Stupnicka, E., 1989. Geologia regionalna Polski [Polish regional geology]. Wydawnictwa Geologiczne, Warszawa, 286 pp.
  • Szmańda, J., 2008. Interpretacja intensywności zdarzeń powodziowych w aluwiach wałów przykorytowych Drwęcy i Tążyny na podstawie zapisu sedymentologicznego i badań skażenia pierwiastkami śladowymi [Interpretation of the intensity of flood events in overbank deposits of the troughbank dam in Drwęca and Tążyna based on the sedimentological record and research contamination of trace elements]. Landform Analysis 8, 78–82.
  • Tobolski, K., 2005. Selected laboratory testing methods. [In:] G. Miotk-Szpiganowicz, K. Tobolski & J. Zachowicz (Eds): Deposits of the biogenic accumulation reservoirs. Guide-book for laboratory and field activity. Polish Geological Institute, Gdańsk, 68–71.
  • Tylmann, W., 2005. Lithological and geochemical record of anthropogenic changes in recent sediments of a small and shallow Lake (Lake Pusty Staw, northern Poland). Journal of Palaeolimnology 33, 313–325.
  • Walanus, A., 2000. Istotność statystyczna wniosków z analiz ilościowych na przykładzie badań górnego czwartorzędu [The statistical significance of the conslusions of the quantitative analyzes of research on the example of upper Quaternary]. Geologia, Kwartalnik AGH 26, 4, 1–59.
  • Weckwerth, P., 2010. Evolution of the Toruń Basin in the Late Weichselian. Landform Analysis 14, 57–84.
  • Woszczyk, M., 2011. Paleolimnologiczna interpretacja krzemionki biogenicznej – dyskusja na przykładzie wybranych jezior Niżu Polskiego [Paleolimnology interpretation of biogenic silica – discussion on selected Polish Lowland lakes]. Badania Fizjograficzne, Ser. A, Geografia Fizyczna, 165–179.
  • Woszczyk, M., 2016. Precipation of calcium carbonate in a shallow polymictic coastal lake: assessing the role of primary production, organic matter degradation and sediment mixing. Oceanological and Hydrobiological Studies 45, 1, 86–99.
  • Woszczyk, M. & Spychalski, W., 2007. Czynniki czasowej zmienności zawartości wybranych metali ciężkich w osadach Jeziora Sarbsko (Nizina Gardnieńsko-Łebska) na tle genezy zbiornika [Factors influencing temporal changes in heavy metal contents in the deposits of Lake Sarbsko (Gardno-Łeba Coastal Plain) on the background of the basin evolution]. Ochrona Środowiska i Zasobów Naturalnych 31, 485–497.
  • Xue, J., Lee, C., Wakeham, S.G. & Armstrong, R.A., 2011. Using principal components analysis (PCA) with cluster analysis to study the organic geochemistry of sinking particles in the ocean. Organic Geochemistry 42, 4, 356–367.
  • Zolitschka, B., Behre, K.E. & Sneider, J., 2003. Human and climatic impact on the environment as derived from colluvial, fluvial and lacustrine archives – examples from the Bronze Age to the Migration Period, Germany. Quaternary Science Reviews 22, 81–100.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8ee3e1b8-ef07-4620-a6dd-5dff81a5a458
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.