PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of neural networks for drought forecasting based on the standardised precipitation index

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Based on data from the National Disaster Management Agency, South Sumatra is one of the provinces with a reasonably large drought-affected area, totalling 8,853,691.009 ha. Drought is a hydrometeorological disaster, characterised by anomalous rainfall below normal levels. Reduced rainfall can lead to decreased soil moisture, reduced river flows, and a general scarcity of water, which limits availability of water both on the surface and in the soil. To anticipate and mitigate the impacts of drought, an accurate forecasting system is essential for effective disaster management and mitigation. This research focuses on forecasting drought using the standardised precipitation index (SPI) based on Long Short-Term Memory (LSTM) and Multilayer Perceptron (MLP) algorithms. It compares LSTM and MLP algorithms by integrating rainfall data from the FY-4A satellite and observational rain gauges, which are processed to generate SPI values. These data are employed to train and test MLP and LSTM models in predicting future drought conditions. The results indicate that drought can be effectively predicted using both MLP and LSTM. However, the MLP outperforms the LSTM, as reflected by a higher Nash-Sutcliffe efficiency (NSE) value, a lower error rate, and a predicted date trend that more closely aligns with actual observations.
Wydawca
Rocznik
Tom
Strony
113--121
Opis fizyczny
Bibliogr. 30 poz., mapa, rys., tab., wykr.
Twórcy
  • Telkom University, Faculty School of Computing, The University Center of Excellence Intelligent Sensing-IoT, Jl. Halimun Raya No. 2, RT.15/RW.6, Guntur, Kecamatan Setiabudi, Kota Jakarta Selatan, Jakarta 12980, Indonesia
autor
  • Telkom University, Faculty School of Computing, The University Center of Excellence Human Centric Engineering, Jl. Halimun Raya No. 2, RT.15/RW.6, Guntur, Kecamatan Setiabudi, Kota Jakarta Selatan, Jakarta 12980, Indonesia
  • Meteorological, Climatological, and Geophysical Agency, Jl. Angkasa I No. 2 Kemayoran, Jakarta Pusat 10610, Indonesia
  • Meteorological, Climatological, and Geophysical Agency, Jl. Angkasa I No. 2 Kemayoran, Jakarta Pusat 10610, Indonesia
  • Meteorological, Climatological, and Geophysical Agency, Jl. Angkasa I No. 2 Kemayoran, Jakarta Pusat 10610, Indonesia
  • Telkom University, Faculty School of Computing, Information Technology, Jl. Halimun Raya No. 2, RT.15/RW.6, Guntur, Kecamatan Setiabudi, Kota Jakarta Selatan, Jakarta 12980, Indonesia
  • Telkom University, Faculty School of Computing, Information Technology, Jl. Halimun Raya No. 2, RT.15/RW.6, Guntur, Kecamatan Setiabudi, Kota Jakarta Selatan, Jakarta 12980, Indonesia
Bibliografia
  • Akbar, G. et al. (2024) “Multivariate imputation chained equation on solar radiation in automatic weather station,” Jurnal Penelitian Pendidikan IPA, 10(7), pp. 3633–3639. Available at: https://doi.org/10.29303/jppipa.v10i7.7679.
  • Alawsi, M.A. et al. (2022) “Drought forecasting: A review and assessment of the hybrid techniques and data pre-processing,” Hydrology, 9(7), 115. Available at: https://doi.org/10.3390/hydrology9070115.
  • Ali, Z. et al. (2017) “Forecasting drought using multilayer perceptron artificial neural network model,” Advances in Meteorology, 2017 (1), 5681308. Available at: https://doi.org/10.1155/2017/5681308.
  • Bouaziz, M., Medhioub, E. and Csaplovisc, E. (2021) “A machine learning model for drought tracking and forecasting using remote precipitation data and a standardized precipitation index from arid regions,” Journal of Arid Environments, 189, 104478. Available at: https://doi.org/10.1016/j.jaridenv.2021.104478.
  • Coşkun, Ö. and Citakoglu, H. (2023) “Prediction of the standardized precipitation index based on the long short-term memory and empirical mode decomposition-extreme learning machine models: The case of Sakarya, Türkiye,” Physics and Chemistry of the Earth, Parts A/B/C, 131, 103418. Available at: https://doi.org/10.1016/j.pce.2023.103418.
  • Ding, Y. et al. (2022) “Application of a Hybrid CEEMD-LSTM Model Based on the Standardized Precipitation Index for drought forecasting: The case of the Xinjiang Uygur Autonomous Region, China,” Atmosphere, 13(9), 1504. Available at: https://doi.org/10.3390/atmos13091504.
  • Guttman, N.B. (1999) “Accepting the Standardized Precipitation Index: A calculation algorithm,” JAWRA Journal of the American Water Resources Association, 35(2), pp. 311–322. Available at: https://doi.org/10.1111/j.1752-1688.1999.tb03592.x.
  • Hartanto et al. (2023) “Evaluation of Meteorological Radar Precipitation Forecast in Banten,” 2023 International Conference on Information Technology and Computing (ICITCOM), 297–300. Available at: https://doi.org/10.1109/ICITCOM60176.2023.10442051.
  • Hartanto et al. (2024) “Spatial evaluation rainfall estimation on weather radar using Marshall–Palmer reflectivity–rainfall rate in Banten,” Journal of Water and Land Development, 62, pp. 193–200. Available at: https://doi.org/10.24425/jwld.2024.151567.
  • Jalalkamali, A., Moradi, M. and Moradi, N. (2015) “Application of several artificial intelligence models and ARIMAX model for forecasting drought using the Standardized Precipitation Index,” International Journal of Environmental Science and Technology, 12(4), pp. 1201–1210. Available at: https://doi.org/10.1007/s13762-014-0717-6.
  • Khan, Md. M.H., Muhammad, N.S. and El-Shafie, A. (2020) “Wavelet based hybrid ANN-ARIMA models for meteorological drought forecasting,” Journal of Hydrology, 590, 125380. Available at: https://doi.org/10.1016/j.jhydrol.2020.125380.
  • Legionosuko, T. et al. (2019) “Posisi dan strategi Indonesia dalam Menghadapi Perubahan Iklim guna Mendukung Ketahanan Nasional [Indonesian position and strategy in responding to climate change to strengthen national resilience,” Jurnal Ketahanan Nasional, 25(3), 295. Available at: https://doi.org/10.22146/jkn.50907.
  • Li, H. et al. (2023) “Machine learning-based bias correction of precipitation measurements at high altitude,” Remote Sensing, 15(8), 2180. Available at: https://doi.org/10.3390/rs15082180.
  • Luo, H. et al. (2023) “Validation analysis of drought monitoring based on FY-4 satellite,” Applied Sciences, 13(16), 9122. Available at: https://doi.org/10.3390/app13169122.
  • McKee, T.B., Doesken, N.J. and Kleist, J. (1995) “Drought monitoring with multiple time scales,” in Proceedings of the Ninth Conference on Applied Climatology, Dallas TX, Jan 15–20, 1995. American Meteorological Society, pp. 233–236.
  • Mohammed Salisu, A. and Shabri, A. (2020) “A Hybrid Wavelet-Arima Model for Standardized Precipitation Index Drought forecasting,” MATEMATIKA, 36(2), pp. 141–156. Available at: https://doi.org/10.11113/matematika.v36.n2.1152.
  • Ouatiki, H., Boudhar, A. and Chehbouni, A. (2023) “Can bias correction techniques improve remote sensing-based rainfall estimates in a semi-arid context: Case of the Oum Er-Rbia River Basin in Morocco,” EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-8537. Available at: https://doi.org/10.5194/egusphere-egu23-8537.
  • Peterson, T.C. et al. (2014) “Changes in weather and climate extremes: State of knowledge relevant to air and water quality in the United States,” Journal of the Air & Waste Management Association, 64(2), pp. 184–197. Available at: https://doi.org/10.1080/10962247.2013.851044.
  • Prabowo, M.A. et al. (2024) “Drought prediction based Standardized Precipitation Index Using Multilayer Perceptron Model,” 2024 International Conference on Smart Computing, IoT and Machine Learning (SIML), pp. 262–267. Available at: https://doi.org/10.1109/SIML61815.2024.10578245.
  • Ren, J. et al. (2021) “Evaluation and improvement of FY-4A AGRI quantitative precipitation estimation for summer precipitation over complex topography of Western China,” Remote Sensing, 13(21), 4366. Available at: https://doi.org/10.3390/rs13214366.
  • Saidah, H. et al. (2019) “Model Runtut waktu untuk peramalan indeks kekeringan daerah Lombok Utara [Time series model for North Lombok drought indices forecasting],” Jurnal Sains Teknologi & Lingkungan, 5(2), pp. 123–132. Available at: https://doi.org/10.29303/jstl.v5i2.130.
  • Song, Y. et al. (2024) “Evaluation of Fengyun geosynchronous orbit and GPM satellites precipitation products over the southeastern Tibetan plateau,” International Journal of Remote Sensing, 45(16), pp. 5616– 5639. Available at: https://doi.org/10.1080/01431161.2024.2377834.
  • Wang, L. et al. (2023) “Towards Bias correction of satellite precipitation retrievals in complex regions with deep learning: A case study over Taiwan,” IGARSS 2023 – 2023 IEEE International Geoscience and Remote Sensing Symposium, pp. 3803–3806. https://doi.org/10.1109/IGARSS52108.2023.10283452.
  • Wilhite, D.A., Sivakumar, M.V.K. and Pulwarty, R. (2014) “Managing drought risk in a changing climate: The role of national drought policy,” Weather and Climate Extremes, 3, pp. 4–13. Available at: https://doi.org/10.1016/j.wace.2014.01.002.
  • WMO (2012) SPI index for different locations. Available at: https://library.wmo.int/records/item/39629-standardized-precipitation-index-user-guide?language_id=13 (Accessed: November 7, 2024).
  • WMO (2021) Guide to instruments and methods of observation (WMO-No. 8). Geneva: World Meteorological Organization. Available at: https://community.wmo.int/en/activity-areas/imop/wmo-no_8 (Accessed: November 7, 2024).
  • Xu, D. et al. (2020) “Application of a Hybrid ARIMA–SVR Model based on the SPI for the forecast of drought – A case study in Henan Province, China,” Journal of Applied Meteorology and Climatology, 59(7), pp. 1239–1259. Available at: https://doi.org/10.1175/JAMC-D-19-0270.1.
  • Yin, G., Baik, J. and Park, J. (2022) “Comprehensive analysis of GEO-KOMPSAT-2A and FengYun satellite-based precipitation estimates across Northeast Asia,” GIScience & Remote Sensing, 59(1), pp. 782–800. Available at: https://doi.org/10.1080/15481603.2022.2067970.
  • Yulizar, D. et al. (2024) “Visualization of rainfall classification using rain gauge based on website,” in 2024 IEEE International Conference on Artificial Intelligence and Mechatronics Systems (AIMS), Bandung, Indonesia, February 21–23, 2024, pp. 1–5. Available at: https://doi.org/10.1109/AIMS61812.2024.10512600.
  • Zhang, Y. et al. (2020) “Comparison of the ability of ARIMA, WNN and SVM models for drought forecasting in the Sanjiang Plain, China,” Natural Resources Research, 29(2), pp. 1447–1464. Available at: https://doi.org/10.1007/s11053-019-09512-6.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8ee19901-b2b9-4e42-9ac5-25bd2cd3817f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.