PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of CO2 and Nd:YAG laser remelting of the Ti6Al4V alloy on the surface quality and residual stresses

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The titanium alloys are materials susceptible to tribological wear and the laser treatment can be applied in surface treatment processes to obtain for example higher hardness level. From the other side, it is important to take into consideration, that hardness increase that can be connected with cracks . The aim of this research was to investigate the effects of different lasers and the process parameters on the form and level of residual stresses in the Ti6Al4V alloy, which determine the initiation and propagation of cracking. Two lasers were used, the CO2 and Nd:YAG lasers. The specimens were remelted in liquid nitrogen, water or calm air at different pre-heating temperature. The different laser power and scan rates were applied. The increase in energy density increased the number of cracks, the change of an environment and pre-heating affected alo the surface cracking. The cracks observed after remelting with Nd:YAG laser were longer than those observed after treatment with CO2 laser. The compressive stresses after the CO2 laser treatment, and tensile stresses after treatment with the Nd:YAG laser, were found. The appearance of cracks was attributed to an excessive energy density. The different distribution of heat energy inside and around the laser tracks was discussed as the origin of presence either tensile or compressive stresses in the alloy treated with different lasers.
Rocznik
Strony
82--90
Opis fizyczny
Bibliogr. 28 poz., tab., rys.
Twórcy
  • Gdansk University of Technology, Department of Materials Engineering and Welding, Narutowicza 11/12, 80-233 Gdansk, Poland
Bibliografia
  • 1. Kusiński J., Kac S., Kopia A., Radziszewska A., Rozmus-Górnikowska M., Major B., Major L., Marczak J., Lisiecki A.: Laser modification of the materials surface layer – a review paper. Bulletin of the Polish Academy Of Sciences, Technical Sciences, 4 (2012) 711-728.
  • 2. Candel J. J., Amigó V.: Recent advances in laser surface treatment of titanium alloys. Journal of Laser Applications, 23 (2011) 1-7.
  • 3. Quazi, M. M., Ishak, M., Fazal, M. A., Arslan, A., Rubaiee, S., Aiman, M. H., Sultan T., Manladan, S. M.: A comprehensive assessment of laser welding of biomedical devices and implant materials: recent research, development and applications. Critical Reviews in Solid State and Materials Sciences, (2020) 1-43.
  • 4. Götz H.,E., Müller M. Emmel A., Holzwarth U., Erben R.G., Stangl R.: Effect of surface finish on the osteointegration of laser-treated titanium alloy implants. Biomaterials 25 (2004) 4057-4064.
  • 5. Tęczar P., Majkowska-Marzec B., Bartmański M.: The influence of laser alloying of Ti13Nb13Zr on sur-face topography and properties. Advances in Materials Science, 19 (2019) 44-56.
  • 6. Majkowska-Marzec, B., Rogala-Wielgus, D., Bartmański, M., Bartosewicz, B., Zieliński, A.: Comparison of properties of the hybrid and bilayer MWCNTs—hydroxyapatite coatings on Ti alloy. Coatings, 9 (2019) 643.
  • 7. Landowski, M.: Influence of parameters of laser beam welding on structure of 2205 duplex stainless steel. Advances in Materials Science, 19 (2019) 21-31.
  • 8. Zeng, C., Wen, H., Ettefagh, A. H., Zhang, B., Gao, J., Haghshenas, A., Raush J.R. Guo, S. M. (2020). Laser nitriding of titanium surfaces for biomedical applications. Surface and Coatings Technology, 385 (2020) 125397.
  • 9. Lisiecki, A.: Study of optical properties of surface layers produced by laser surface melting and laser sur-face nitriding of titanium alloy. Materials, 12 (2019) 3112
  • 10. Yue T.M., Cheung T.M., Man H.C.: The effects of laser surface treatment on the corrosion properties of Ti-6Al-4V alloy in Hank`s solution. Journal Materials Science Letters, 19 (2000) 205-208.
  • 11. Yue T.M., Yu J.K., Mei Z., Man H.C.: Excimer laser surface treatment of Ti-6Al-4V alloy for corrosion resistance enhancement. Materials Letters, 52 (2002) 206-212.
  • 12. Guillemot F., Prima E., Tokarev V.N., Belin C., Porté-Durrieu M.C., Gloriant T., Baquey Ch., Lazare S.: Ultraviolet laser surface treatment fore biomedical applications of β titanium alloys: morphological and structural characterization. Applied Physics A, 77 (2003) 899-904.
  • 13. Sun Z., Annergreen I., Pan D., Mai T.A.: Effect of laser surface remelting on the corrosion behavior of commercially pure titanium sheet. Materials Science and Engineering: A, 345 (2003) 293-300.
  • 14. Sušnik J., Sturm R., Grum J.: Influence of laser surface remelting on Al-Si alloy properties. Journal of Mechanical Engineering, 58 (2012) 614-620.
  • 15. Temmler A., Walochnik M. A., Willenborg E., Wissenbach K.: Surface structuring by remelting of tita-nium alloy Ti6Al4V. Journal of Laser Applications, 27 (2015) 29103.
  • 16. Grum J., Šturm R.: Residual stress state after the laser surface remelting process. Journal of Materials Engineering and Performance, 10 (2001) 270.
  • 17. Šturm R., Grum J.: Influence of laser remelting process on strain and residual stresses in nodular iron. Materials Science Forum, 681 (2011) 188-193
  • 18. Yilbas B. S., Akhtar S. S., Matthews A., Karatas C.: Laser remelting of zirconia surface: investigation into stress field and microstructures. Materials and Manufacturing Processes, 26 (2011) 1277-1287.
  • 19. Kik, T., & Górka, J.: Numerical simulations of laser and hybrid S700MC T-joint welding. Materials, 12(3) (2019) 516.
  • 20. Kik, T.: Computational techniques in numerical simulations of arc and laser welding processes. Materials, 13(3) (2020) 608.
  • 21. Grum J., Šturm R.: Influence of laser remelting process parameters on residual stresses in nodular cast iron. Materials and Manufacturing Processes, 15 (2000) 815-827.
  • 22. Preußner J., Oeser S., Pfeiffer W., Temmler A., Willenborg E.: Microstructure and residual stresses of laser remelted surfaces of a hot work tool steel. International Journal of Materials Research, 105 (2014) 328-336.
  • 23. Bylica A., Bochnowski W., Więcek G.: Residual stresses in the laser remelted C45 steel. Archiwum Odlewnictwa, 6 (2006) 43-48 (in Polish).
  • 24. Gusarov A.V., Pavlov M., Smurov I.: Residual stresses at laser surface remelting and additive manufac-turing. Physics Procedia, 12 (2011) 248–254.
  • 25. Majkowska B., Serbiński W.: Analysis of residual stresses in laser remelted surface layer of the SUPER-STON alloy for ship propellers. Inżynieria Materiałowa 6 (2009) 501-504 (in Polish).
  • 26. Serbiński W., Olive J. M., Rudnicki J.: Laser surface treatment of aluminium-silicon alloy at cryogenic conditions. Advances in Materials Science, 3 (2003) 51-59
  • 27. Majkowska B., Serbiński W.: Microstructure and corrosion properties of the laser treated SUPERSTON alloy. Journal of Achievements in Materials and Manufacturing Engineering, 18 (2006) 415-418.
  • 28. Zieliński A., Jażdżewska M., Łubiński J., Serbiński W.: Effects of laser remelting at cryogenic conditions on microstructure and wear resistance of the Ti6Ai4V alloy applied in medicine. Solid State Phenomena, 183 (2012) 215-224.
Uwagi
1. The author thanks Prof. Andrzej Dziadoń for their technical assistance in some tests. The helpful comments of Prof. Andrzej Zielinski are gratefully acknowledged.
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8eddebaf-1128-46d0-ad3b-b268a0d06b20
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.