Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The well-known dominant sources of airframe noise are associated with unsteadiness of separated and/or vortical flow regions around the high-lift system (flaps, slats) and the aircraft undercarriage (landing gear). Current practical landing gear noise prediction models are individual component - based, which means that the various components are divided into groups according to the frequency range, in which they predominantly radiate noise. Since the far-field noise spectra are approximately Strouhal - based, the emitted frequency is assumed to be directly related to their size: the large elements are responsible for the low frequency region of the spectra, and the small components for the high frequency region. On the basis of such understanding of the noise generation mechanism, the special configurations that lead to considerable noise suppression were proposed. One element of these configurations are rods with different shape and cross section. In this work the situation when circular rods are in area of laminar-turbulent flow were analysed. The measurements were carried out for single circular rod with different diameters to study the noise effect depended on Reynolds number. Far field noise for broad range of Reynolds numbers was also examined depending on distance from the source of noise.
Czasopismo
Rocznik
Tom
Strony
art. no. 2019116
Opis fizyczny
Bibliogr. 12 poz., fot. kolor., 1 rys., wykr.
Twórcy
autor
- Lodz University of Technology, 266 Piotrkowska Street, 90-924 Lodz, Poland
autor
- Lodz University of Technology, 266 Piotrkowska Street, 90-924 Lodz, Poland
autor
- Institute of Power Engineering - Thermal Technology Branch "ITC" in Lodz, 113 Dabrowskiego Street, 93-208 Lodz, Poland
autor
- Institute of Power Engineering - Thermal Technology Branch "ITC" in Lodz, 113 Dabrowskiego Street, 93-208 Lodz, Poland
Bibliografia
- 1. M. G. Smith, L. C. Chow, Validation of a prediction model for aerodynamic noise from aircraft landing gear”, AIAA paper 2002 - 2581.
- 2. W. Dobrzynski, H. Buchholz, Full scale noise testing on airbus landing gears in the German-Dutch Wind Tunnel”, AIAA paper 97-1597.
- 3. M. M. Zdravkovich, Flow around circular cylinder, Volume 1, Oxford University Press, 1997.
- 4. M. M. Zdravkovich, Flow around circular cylinder, Volume 2,Oxford University Press, 2003.
- 5. O. Inoue, N. Hatakeyama, Sound generation by a two-dimensional circular cylinder in a uniform flow, Journal of Fluid Mechanics, 471 (2002) 285 - 314.
- 6. S. J. Park, C. W. Lee, Flow structure around a finite circular cylinder embedded in various atmospheric boundary layers, Fluid Dynamics Research, 30(3) (2002) 197 - 215.
- 7. R. H. Schlinker, M. R. Fink, R. K. Amiet, Vortex noise from non-rotating cylinders and airfoils, AIAA paper 76 - 81.
- 8. H. Fujita, H. Suzuki, A. Sagawa, T. Takaishi, The Aeolian tone characteristics of a circular cylinder in high Reynolds number flow, AIAA paper 99 - 1849.
- 9. W. A. Olsen, Noise generated by impingement of turbulent flow on airfoils of varied chord, cylinders, and other flow obstructions, AIAA paper, 76 - 504.
- 10. M. R. Davis, N. H. Pan, Noise generated by the interaction of turbulent jets with circular cylinders, Journal of Sound and Vibration, 135(3) (1989) 427 - 442.
- 11. A. R. Barnard, Flow Induced Noise Reduction Techniques for Microphones, Sound & Vibration, October (2014) 3 - 12.
- 12. L. McCormack, S. Delikaris-Manias, V. Pulkki, Parametric acoustic camera for real-time sound capture, analysis and tracking, Proceedings of the 20th International Conference on Digital Audio Effects (DAFx-17), Edinburgh, UK, September (2017) 5 - 9.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8edd9571-46ed-4f17-8797-2c4049d58ca0