PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Small perturbations of critical nonlocal equations with variable exponents

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article, we are concerned with the following critical nonlocal equation with variable exponents: [wzór], where Ω⊂RN is a bounded domain with Lipschitz boundary, N ≥ 2 , p ∈ C (Ω×Ω) is symmetric, f : C(Ω×R)→R is a continuous function, and λ is a real positive parameter. We also assume [wzór] is the critical Sobolev exponent for variable exponents. We prove the existence of non-trivial solutions in the case of low perturbations (λ small enough) by using the mountain pass theorem, the concentration-compactness principles for fractional Sobolev spaces with variable exponents, and the Moser iteration method. The features of this article are the following: (1) the function f does not satisfy the usual Ambrosetti-Rabinowitz condition and (2) this article contains the presence of critical terms, which can be viewed as a partial extension of the previous results concerning the the existence of solutions to this problem in the case of s = 1 and subcritical case.
Wydawca
Rocznik
Strony
art. no. 20230266
Opis fizyczny
Bibliogr. 43 poz.
Twórcy
autor
  • College of Mathematics, Changchun Normal University, Changchun 130032, Jilin, PR China
autor
  • College of Mathematics, Changchun Normal University, Changchun 130032, Jilin, PR China
autor
  • College of Mathematics, Changchun Normal University, Changchun 130032, Jilin, PR China
Bibliografia
  • [1] E. Acerbi and G. Mingione, Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal. 164 (2002), 213–259, DOI: https://doi.org/10.1007/s00205-002-0208-7.
  • [2] Y. Chen, S. Levine, and M. Rao, Variable exponent linear growth functionals in image restoration, SIAM J. Appl. Math. 66 (2006), 1383–1406, DOI: https://doi.org/10.1137/050624522.
  • [3] Z. Guo, J. Sun, D. Zhang, and B. Wu, Adaptive Perona-Malik model based on the variable exponent for image denoising, IEEE Trans. Image Process 21 (2012), 958–967, DOI: https://doi.org/10.1109/TIP.2011.2169272.
  • [4] F. Karami, K. Sadik, and L. Ziad, A variable exponent nonlocal p(x)-Laplacian equation for image restoration, Comput. Math. Appl. 75 (2018), 534–546, DOI: https://doi.org/10.1016/j.camwa.2017.09.034.
  • [5] W. Orlicz, Über konjugierte exponentenfolgen, Studia Math. 3 (1931), 200–212, DOI: http://dx.doi.org/10.4064/sm-3-1-200-211.
  • [6] O. Kovácik and J. Rákosnik, On spaces Lp(x) and W1,p(x), , Czechoslovak Math. J. 41 (1991), 592–618.
  • [7] J. Yao and X. Wang, Compact imbeddings between variable exponent spaces with unbounded underlying domain, Nonlinear Anal. 70 (2009), 3472–3482, DOI: https://doi.org/10.1016/j.na.2008.07.005.
  • [8] X. Fan, Sobolev embeddings for unbounded domain with variable exponent having values across N , Math. Inequal. Appl. 13 (2010), 123–134, DOI: https://doi.org/10.7153/mia-13-09
  • [9] V. V. Zhikov, On some variational problems, Russ. J. Math. Phys. 5 (1997), 105–116, https://mathscinet.ams.org/mathscinet-getitem?mr=1486765.
  • [10] V. D. Rădulescu and D. D. Repovš, Partial Differential Equations with Variable Exponents. Variational Methods and Qualitative Analysis, Monogr. Res. Notes Math. CRC Press, Boca Raton, FL, 2015, xxi+301 pp, DOI: https://doi.org/10.1201/b18601.
  • [11] E. J. Hurtado, O. H. Miyagaki, and R. S. Rodrigues, Existence and multiplicity of solutions for a class of elliptic equations without Ambrosetti-Rabinowitz type conditions, J. Dynam. Differential Equations 30 (2018), 405–432, DOI: https://doi.org/10.1007/s10884-016-9542-6.
  • [12] J. Liu, P. Pucci, H. Wu, and Q. Zhang, Existence and blow-up rate of large solutions of p(x)-Laplacian equations with gradient terms, J. Math. Anal. Appl. 457 (2018), 944–977, DOI: https://doi.org/10.1016/j.jmaa.2017.08.038.
  • [13] P. Pucci and Q. Zhang, Existence of entire solutions for a class of variable exponent elliptic equations, J. Differential Equations 257 (2014), 1529–1566, DOI: https://doi.org/10.1016/j.jde.2014.05.023.
  • [14] M. A. Ragusa and A. Tachikawa, Regularity for minimizers for functionals of double phase with variable exponents, Adv. Nonlinear Anal. 9 (2020), 710–728, DOI: https://doi.org/10.1515/anona-2020-0022.
  • [15] C. Alves, A. Moussaoui, and L. Tavares, An elliptic system with logarithmic nonlinearity, Adv. Nonlinear Anal. 8 (2017), 928–945, DOI: https://doi.org/10.1515/anona-2017-0200.
  • [16] A. Soni and D. Choudhuri, Existence of multiple solutions to an elliptic problem with measure data, J. Elliptic Parabol. Equ. 4 (2018), 369–388, DOI: https://doi.org/10.1007/s41808-018-0024-3.
  • [17] S. Ghosh, K. Saoudi, and K. Kratou, Least energy sign-changing solution of fractional p-Laplacian problems involving singularities, Dynam. Partial Differential Equations 17 (2020), 97–155, DOI: https://doi.org/10.4310/DPDE.2020.v17.n2.a1.
  • [18] C. O. Alves and L. S. Tavares, A Hardy-Littlewood-Sobolev-type inequality for variable exponents and applications to quasilinear Choquard equations involving variable exponent, Mediterr. J. Math. 16 (2019), 1–27, DOI: https://doi.org/10.1007/s00009-019-1316-z.
  • [19] X. Cao, Bin Ge, and Bei Zhang, On a class of p(x)-Lapacian equations without any growth and Ambrosetti-Rabinowitz conditions, J. Differential Equations 26 (2021), 259–280, DOI: https://doi.org/10.57262/ade026-0506-259.
  • [20] H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437–477, DOI: https://doi.org/10.1002/cpa.3160360405.
  • [21] P. L. Lions, The concentration compactness principle in the calculus of variations. The locally compact case, Part I, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 109–145, DOI: https://doi.org/10.1016/S0294-1449(16)30428-0.
  • [22] P. L. Lions, The concentration compactness principle in the calculus of variations. The limit case, Part II, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 223–283, DOI: https://doi.org/10.1016/S0294-1449(16)30422-X.
  • [23] A. K. Ben-Naouma, C. Troestler, and M. Willem, Extrema problems with critical Sobolev exponents on unbounded domains, Nonlinear Anal. 26 (1996), 823–833, DOI: https://doi.org/10.1016/0362-546X(94)00324-B.
  • [24] J. Chabrowski, Concentration-compactness principle at infinity and semilinear elliptic equations involving critical and subcritical Sobolev exponents, Calc. Var. Partial Differential Equations 3 (1995), 493–512, DOI: https://doi.org/10.1007/BF01187898.
  • [25] Y. Q. Fu and X. Zhang, Multiple solutions for a class of p(x)-Laplacian equations in n involving the critical exponent, Proc. A. 466 (2010), 1667–1686, DOI: https://doi.org/10.1098/rspa.2009.0463.
  • [26] Y. Q. Fu, Existence of solutions for p(x)-Laplacian problem on an unbounded domain, Topol. Methods Nonlinear Anal. 30 (2007), 235–249, DOI: https://doi.org/10.12775/tmna.2007.028.
  • [27] S. Liang and J. Zhang, Multiple solutions for a noncooperative p(x)-Laplacian equations in N involving the critical exponent, J. Math. Anal. Appl. 403 (2013), 344–356, DOI: https://doi.org/10.1016/j.jmaa.2013.01.003.
  • [28] S. Liang and J. Zhang, Infinitely many small solutions for the p(x)-Laplacian operator with nonlinear boundary conditions, Ann. Mat. Pura Appl. 192 (2013), 1–16, DOI: https://doi.org/10.1007/s10231-011-0209-y.
  • [29] A. Sabri, A. Jamea, and H. Talibi Alaoui, Weak solution for fractional (p1,…,pm)-Laplacian system with Dirichlet-type boundary conditions, Rend. Circ. Mat. Palermo 70 (2021), no.3, 1541–1560, DOI: https://doi.org/10.1515/anona-2020-0022.
  • [30] D. Applebaum, Lévy processes-from probability to finance and quantum groups, Notices Amer. Math. Soc. 51 (2004), 1336–1347.
  • [31] L. Caffarelli, Nonlocal diffusions, drifts and games, Nonlinear Partial Differential Equations Abel Symp. 7 (2012), 37–52, DOI: https://doi.org/10.1007/978-3-642-25361-4_3.
  • [32] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32 (2007), 1245–1260, DOI: https://doi.org/10.1080/03605300600987306.
  • [33] G. Molica Bisci, V. Rădulescu, and R. Servadei, Variational Methods for Nonlocal Fractional Equations, Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 2016.
  • [34] U. Kaufmann, J. D. Rossi, and R. Vidal, Fractional Sobolev spaces with variable exponents and fractional p(x)-Laplacians, Electron. J. Qual. Theory Differ. Equ. 76 (2017), 1–10, DOI: https://doi.org/10.14232/ejqtde.2017.1.76.
  • [35] K. Ho and Y. H. Kim, The concentration-compactness principles for Ws,p(⋅,⋅)(RN) and application, Adv. Nonlinear Anal. 10 (2021), 816–848, DOI: https://doi.org/10.1515/anona-2020-0160.
  • [36] E. Azroul, A. Benkirane, and M. Shimi, Existence and multiplicity of solutions for fractional p(x,⋅)-Kirchhoff-type problems in N , Appl. Anal. 100 (2021), 2029–2048, DOI: https://doi.org/10.1080/00036811.2019.1673373.
  • [37] M. Xiang, B. Zhang, and D. Yang, Multiplicity results for variable order frational Laplacian with variable growth, Nonlinear Anal. 178 (2019), 190–204, DOI: https://doi.org/10.1016/j.na.2018.07.016.
  • [38] M. Xiang, D. Yang, and B. Zhang, Homoclinic solutions for Hamiltonian systems with variable-order fractional derivatives, Complex Var. Elliptic Equ. 65 (2020), 1412–1432, DOI: https://doi.org/10.1080/17476933.2019.1652281.
  • [39] D. E. Edmunds and J. Raskosnik, Sobolev embeddings with variable exponent, Studia Math. 143 (2000), 267–293, DOI: https://doi.org/10.4064/sm-143-3-267-293.
  • [40] X. Fan and D. Zhao, On the spaces Lp(x)(Ω) and Wm,p(x)(Ω), J. Math. Anal. Appl. 263 (2001), 424–446.
  • [41] B. Cekic and R. A. Mashiyev, Existence and localization results for p(x)-Laplacian via topological methods, Fixed Point Theory 1 (2010), 1–7, DOI: https://doi.org/10.1155/2010/120646.
  • [42] K. Ho and Y. H. Kim, A-priori bounds and multiplicity of solutions for nonlinear elliptic problems involving the fractional p(⋅)-Laplacian, Nonlinear Anal. 188 (2019), 179–201, DOI: https://doi.org/10.1016/j.na.2019.06.001.
  • [43] K. Ho, Y. H. Kim, and I. Sim, Existence results for Schrödinger p(⋅)-Laplace equations involving critical growth in N , Nonlinear Anal. 182 (2019), 20–44.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8edc15a9-0a35-4140-8c8f-725339ad7402
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.