PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Wzmocnienie sygnału magnetycznego rezonansu jądrowego metodami hiperpolaryzacji jądrowej ze szczególnym uwzględnieniem hiperpolaryzacji indukowanej parawodorem

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Nuclear magnetic resonance signal enhancement by hyperpolarization methods with particular focus on parahydrogen induced polarization
Języki publikacji
PL
Abstrakty
EN
Nuclear Magnetic Resonance based methods are currently being widely utilized in many fields of science, medicine, and industry. The impressive amount of success that has been made with NMR has been possible because an enormous effort has been expended to improve the low level of NMR sensitivity. However, the issue of low NMR sensitivity is still a serious problem, and NMR still cannot be utilized in many important cases where the concentrations of NMR active species are low-this is why the boosting of the NMR signal is currently one of the most important research fields in the NMR area. Here, the problem of low NMR sensitivity is discussed through the presentation of methodologies aimed at increasing NMR sensitivity and their novel applications. First, a short general overview of the NMR and its sensitivity problem will be presented. Having clearly identified the problem, the main technologies that will be utilized for the improvement of NMR sensitivity will be introduced. First, we will concisely, and with appropriate references, present methodologies that can increase NMR sensitivity via the design of novel superconducting magnets, the application of cryotechnology for the design of noiseless probe heads, and other hardware and software approaches. Next, the most promising and powerful method for NMR signal enhancement which is known as hyperpolarization will be discussed. First, noble gas hyperpolarization and CIDNP will be briefly presented. We will describe the basic mechanism and applications of these methods. Next, our attention will be paid to the DNP approach, and the origin and applications of the DNP effect will be presented, in particular from the point of view of its utilization in medical diagnostics and material sciences. The most extensive part of our discussion will be devoted to the parahydrogen-based methods, which include hydrogenable Parahydrogen Induced Polarization and Signal Amplification by Reversible Exchange. In the introduction to these methods, the properties of hydrogen molecules, which are the main driving forces of PHIP, will be presented. The mechanism of the boosting of NMR signals will be presented for hPHIP and SABRE. The application of these methods will be presented, with the central focus being on their applications in catalysis and medical diagnostics. In the context of medical applications, the hyperpolarization of biorelevant molecules will be presented. Finally, a summary and future prospects for the development of methods of NMR signal enhancement, particularly in the context of hyperpolarization, will be discussed.
Rocznik
Strony
912--942
Opis fizyczny
Bibliogr. 174 poz., rys., wykr.
Twórcy
autor
  • Wydział Chemii, Uniwersytet Warszawski, ul. ul. Pasteura 1, 02-093 Warszawa
autor
  • Instytut Chemii Fizycznej, Polskiej Akademii Nauk, ul. Kasprzaka 44/52, 01-224 Warszawa
  • Instytut Chemii Fizycznej, Polskiej Akademii Nauk, ul. Kasprzaka 44/52, 01-224 Warszawa
Bibliografia
  • [1] H. Gunzler, A. Williams, Handbook of Analytical Techniques, WILEY‐VCH Verlag GmbH,Weinheim, 2001.
  • [2] S. Kromidas, HPLC-MS Handbook for Practitioners, WILEY‐VCH Verlag GmbH, Weinheim, 2017.
  • [3] R. Kimmich, NMR: Tomography, Diffusometry, Relaxometry, Springer Berlin, Heidelberg,1997.
  • [4] M. Elyashberg, TrAC Trends Anal. Chem., 2015, 69, 88.
  • [5] B. Reif, S. E. Ashbrook, L. Emsley, M. Hong, Nat. Rev. Methods Prim., 2021, 1, 2.
  • [6] E. Skorupska, A. Jeziorna, S. Kazmierski, M. J. Potrzebowski, Solid State Nucl. Magn. Reson., 2014, 57–58, 2.
  • [7] T. Le Marchand, T. Schubeis, M. Bonaccorsi, P. Paluch, D. Lalli, A. J. Pell, L. B. Andreas, K. Jaudzems, J. Stanek, G. Pintacuda, Chem. Rev., 2022, 122, 9943.
  • [8] V. Domenici, Liq. Cryst. Today, 2017, 26, 2.
  • [9] K. Jackowski, M. Jaszuński, Gas Phase NMR, The Royal Society Of Chemistry, 2016.
  • [10] K. Wüthrich, Angew. Chemie Int. Ed., 2003, 42, 3340.
  • [11] P. Garbacz, J. Cukras, M. Jaszuński, Phys. Chem. Chem. Phys., 2015, 17, 22642.
  • [12] R. Nygaard, J. A. H. Romaniuk, D. M. Rice, L. Cegelski, J. Phys. Chem. B, 2017, 121, 9331.
  • [13] S. M. Lyons, D. Gudanis, S. M. Coyne, Z. Gdaniec, P. Ivanov, Nat. Commun., 2017, 8, 1127.
  • [14] R. Zhang, T. Miyoshi, P. Sun, NMR Methods for Characterization of Synthetic and Natural Polymers, The Royal Society Of Chemistry, 2019.
  • [15] D. L. Bryce, IUCrJ 2017, 4, 350.
  • [16] A. Mames, M. Pietrzak, P. Bernatowicz, A. Kubas, R. Luboradzki, T. Ratajczyk, Chem. – A Eur. J., 2021, 27, 16477.
  • [17] P. Hodgkinson, Prog. Nucl. Magn. Reson. Spectrosc., 2020, 118–119, 10.
  • [18] S. Szymańsksi, Annu. Rep. NMR Spectrosc., 1998, 35, 1.
  • [19] J. Sandstrom, Dynamic Nmr Spectroscopy, Ademic Pr, 1983.
  • [20] A. D. Bain, Prog. Nucl. Magn. Reson. Spectrosc., 2003, 43, 63.
  • [21] S. Kolehmainen, Annu. Reports NMR Spectrosc., 2003, 49, 1.
  • [22] N. Piślewski, J. Tritt-Goc, M. Bielejewski, A. Rachocki, T. Ratajczyk, S. Szymański, Solid State Nucl. Magn. Reson., 2009, 35, 194.
  • [23] M. Urbańczyk, W. Koźmiński, K. Kazimierczuk, Angew. Chemie Int. Ed., 2014, 53, 6464.
  • [24] T. D. W. Claridge, High-Resolution NMR Techniques in Organic Chemistry, Elsevier, 2009, 303.
  • [25] P. C. Lauterbur, Nature, 1973, 242, 190.
  • [26] E. J. R. van Beek, C. Kuhl, Y. Anzai, P. Desmond, R. L. Ehman, Q. Gong, G. Gold, V. Gulani, M. Hall-Craggs, T. Leiner, C. C. T. Lim, J. G. Pipe, S. Reeder, C. Reinhold, M. Smits, D. K. Sodickson, C. Tempany, H. A. Vargas, M. Wang, J. Magn. Reson. Imaging, 2019, 49, e14.
  • [27] J. H. Lee, Y. Okuno, S. Cavagnero, J. Magn. Reson., 2014, 241, 18.
  • [28] J.-H. Ardenkjaer-Larsen, G. S. Boebinger, A. Comment, S. Duckett, A. S. Edison, F. Engelke, C. Griesinger, R. G. Griffin, C. Hilty, H. Maeda, G. Parigi, T. Prisner, E. Ravera, J. van Bentum, S. Vega, A. Webb, C. Luchinat, H. Schwalbe, L. Frydman, Angew. Chem. Int. Ed., 2015, 54, 9162.
  • [29] A. Naito, M. Ramamoorthy, Structural Studies of Liquid Crystalline Materials Using Solid State NMR Technique. Thermotropic Liquid Crystal: Recent Advances, Springer, 2007, 85.
  • [30] M. S. Reisch, Chem. Eng. News, 2015, 93, 19.
  • [31] H. Schwalbe, Angew. Chemie Int. Ed., 2017, 56, 10252.
  • [32] J. Keeler, Understanding NMR Spectroscopy, Wiley, 2010.
  • [33] A. Webb, Anal. Chem., 2012, 84, 9.
  • [34] A. Rahman, M. I. Choudhary, A. Wahab, Solving Problems with NMR Spectroscopy, Academic Press, Boston, 2016.
  • [35] J. Anders, F. Dreyer, D. Krüger, I. Schwartz, M. B. Plenio, F. Jelezko, J. Magn. Reson., 2021, 322, 106860.
  • [36] M. I. Newton, E. A. Breeds, R. H. Morris, Electronics, 2017, 6, 89.
  • [37] I. C. Felli, B. Brutscher, ChemPhysChem 2009, 10, 1356.
  • [38] K. Kazimierczuk, V. Orekhov, Magn. Reson. Chem., 2015, 53, 921.
  • [39] K. Münnemann, H. W. Spiess, Nat. Phys., 2011, 7, 522.
  • [40] K. V Kovtunov, E. V Pokochueva, O. G. Salnikov, S. F. Cousin, D. Kurzbach, B. Vuichoud, S. Jannin, E. Y. Chekmenev, B. M. Goodson, D. A. Barskiy, I. V Koptyug, Chem. – An Asian J., 2018, 13, 1857.
  • [41] J. E. Roos, H. P. McAdams, S. S. Kaushik, B. Driehuys, Magn. Reson. Imaging Clin. N. Am., 2015, 23, 217.
  • [42] M. A. F. Hane, Hyperpolarized and Inert Gas MRI, Academic Press, 2016.
  • [43] D. A. Barskiy, A. M. Coffey, P. Nikolaou, D. M. Mikhaylov, B. M. Goodson, R. T. Branca, G. J. Lu, M. G. Shapiro, V.-V. Telkki, V. V Zhivonitko, I. V Koptyug, O. G. Salnikov, K. V Kovtunov, V. I. Bukhtiyarov, M. S. Rosen, M. J. Barlow, S. Safavi, I. P. Hall, L. Schröder, E. Y. Chekmenev, Chemistry 2017, 23, 725.
  • [44] M. Batz, P.-J. Nacher, G. Tastevin, J. Phys. Conf. Ser., 2011, 294, 12002.
  • [45] A. Nikiel, T. Palasz, M. Suchanek, M. Abboud, A. Sinatra, Z. Olejniczak, T. Dohnalik, G. Tastevin, P.-J. Nacher, Eur. Phys. J. Spec. Top., 2007, 144, 255.
  • [46] D. M. L. Lilburn, G. E. Pavlovskaya, T. Meersmann, J. Magn. Reson., 2013, 229, 173.
  • [47] W. Zhang, S. Xu, X. Han, X. Bao, Chem. Soc. Rev., 2012, 41, 192.
  • [48] A. Nossov, E. Haddad, F. Guenneau, A. Gédéon, Phys. Chem. Chem. Phys. 2003, 5, 4473.
  • [49] M. Boventi, M. Mauri, R. Simonutti, Appl. Sci., 2022, 12, 3152.
  • [50] B. Fan, S. Xu, Y. Wei, Z. Liu, Magn. Reson. Lett., 2021, 1, 11.
  • [51] K. J. Ooms, R. E. Wasylishen, Microporous Mesoporous Mater., 2007, 103, 341.
  • [52] H. C. Hoffmann, M. Debowski, P. Müller, S. Paasch, I. Senkovska, S. Kaskel, E. Brunner, Mater., 2012, 5, 2537.
  • [53] P. Morgado, K. Shimizu, J. M. S. S. Esperança, P. M. Reis, L. P. N. Rebelo, J. N. Canongia Lopes, E. J. M. Filipe, J. Phys. Chem. Lett., 2013, 4, 2758.
  • [54] C. R. Bowers, V. Storhaug, C. E. Webster, J. Bharatam, A. Cottone, R. Gianna, K. Betsey, B. J. Gaffney, J. Am. Chem. Soc., 1999, 121, 9370.
  • [55] J. Jayapaul, L. Schröder, Mol. 2020, 25, DOI 10.3390/molecules25204627.
  • [56] E. Léonce, J.-P. Dognon, D. Pitrat, J.-C. Mulatier, T. Brotin, P. Berthault, Chem. – A Eur. J., 2018, 24, 6534.
  • [57] P. Nikolaou, B. M. Goodson, E. Y. Chekmenev, Chem. - Eur. J., 2015, 21, 3156.
  • [58] A. L. Kern, J. Vogel-Claussen, Br. J. Radiol., 2018, 91, 20170647.
  • [59] T. V Leshina, A. I. Kruppa, M. B. Taraban, Encyclopedia of Spectroscopy and Spectrometry, 1999, 311.
  • [60] L. T. Kuhn, in (Ed.: L.T. Kuhn), Springer Berlin Heidelberg, Berlin, Heidelberg, 2013, pp. 229–300.
  • [61] W. Köckenberger, J. Matysik, in (Eds.: J.C. Lindon, G.E. Tranter, D.W.B.T.-E. of S. and S. (Third E. Koppenaal), Academic Press, Oxford, 2017, pp. 156–162.
  • [62] J. Bargon, Helv. Chim. Acta, 2006, 89, 2082.
  • [63] M. Goez, Adv. Photochem., 1997, 23, 63.
  • [64] B. E. Bode, S. S. Thamarath, K. B. S. S. Gupta, A. Alia, G. Jeschke, J. Matysik, in (Ed.: L.T. Kuhn), Springer Berlin Heidelberg, Berlin, Heidelberg, 2013, pp. 105–121.
  • [65] F. J. Adrian, in (Eds.: L.T. Muus, P.W. Atkins, K.A. McLauchlan, J.B. Pedersen), Springer Netherlands, Dordrecht, 1977, pp. 369–381.
  • [66] C. Richard, P. Granger, in (Eds.: C. Richard, P. Granger), Springer Berlin Heidelberg, Berlin, Heidelberg, 1974, pp. 7–22.
  • [67] Y. Okuno, S. Cavagnero, eMagRes 2017, 283.
  • [68] A. Diller, Alia, E. Roy, P. Gast, H. J. van Gorkom, J. Zaanen, H. J. M. de Groot, C. Glaubitz, J. Matysik, Photosynth. Res., 2005, 84, 303.
  • [69] A. S. Lilly Thankamony, J. J. Wittmann, M. Kaushik, B. Corzilius, Prog. Nucl. Magn. Reson. Spectrosc., 2017, 102–103, 120–195.
  • [70] D. Kruk, Understanding Spin Dynamics, New York, 2015.
  • [71] C. P. Slichter, Reports Prog. Phys., 2014, 77, 72501.
  • [72] E. Ravera, C. Luchinat, G. Parigi, J. Magn. Reson. 2016, 264, 78.
  • [73] J. H. Ardenkjaer-Larsen, J. Magn. Reson. 2016, 264, 3.
  • [74] A. B. Barnes, G. De Paëpe, P. C. A. van der Wel, K.-N. Hu, C.-G. Joo, V. S. Bajaj, M. L. Mak-Jurkauskas, J. R. Sirigiri, J. Herzfeld, R. J. Temkin, R. G. Griffin, Appl. Magn. Reson., 2008, 34, 237.
  • [75] A. G.-K. A. Ejchart, NMR w Cieczach - Zarys Teorii i Metodologii, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 2004.
  • [76] J. G. Krummenacker, V. P. Denysenkov, M. Terekhov, L. M. Schreiber, T. F. Prisner, J. Magn. Reson., 2012, 215, 94.
  • [77] Ü. Akbey, H. Oschkinat, J. Magn. Reson., 2016, 269, 213.
  • [78] S. Lange, W. T. Franks, N. Rajagopalan, K. Döring, M. A. Geiger, A. Linden, B.-J. van Rossum, G. Kramer, B. Bukau, H. Oschkinat, Sci. Adv., 2016, 2, e1600379.
  • [79] S. Tanaka, in (Ed.: G.A.B.T.-A.R. on N.M.R.S. Webb), Academic Press, 2022, pp. 1–46.
  • [80] L. Zhao, A. C. Pinon, L. Emsley, A. J. Rossini, Magn. Reson. Chem., 2018, 56, 583.
  • [81] S. Y. Liao, M. Lee, T. Wang, I. V Sergeyev, M. Hong, J. Biomol. NMR 2016, 64, 223.
  • [82] A. König, D. Schölzel, B. Uluca, T. Viennet, Ü. Akbey, H. Heise, Solid State Nucl. Magn. Reson., 2019, 98, 1.
  • [83] J. Becker-Baldus, C. Bamann, K. Saxena, H. Gustmann, L. J. Brown, R. C. D. Brown, C. Reiter, E. Bamberg, J. Wachtveitl, H. Schwalbe, C. Glaubitz, Proc. Natl. Acad. Sci., 2015, 112, 9896.
  • [84] S. Narasimhan, S. Scherpe, A. Lucini-Paioni, J. van der Zwan, G. E. Folkers, H. Ovaa, M. Baldus, Angew. Chemie Int. Ed., 2019, 58, 12969.
  • [85] A. Bertarello, P. Berruyer, M. Artelsmair, C. S. Elmore, S. Heydarkhan-Hagvall, M. Schade, E. Chiarparin, S. Schantz, L. Emsley, J. Am. Chem. Soc., 2022, 144, 6734.
  • [86] A. G. M. Rankin, J. Trébosc, F. Pourpoint, J.-P. Amoureux, O. Lafon, Solid State Nucl. Magn. Reson., 2019, 101, 116.
  • [87] W.-C. Liao, B. Ghaffari, C. P. Gordon, J. Xu, C. Copéret, Curr. Opin. Colloid Interface Sci., 2018, 33, 63.
  • [88] A. J. Rossini, A. Zagdoun, M. Lelli, A. Lesage, C. Copéret, L. Emsley, Acc. Chem. Res., 2013, 46, 1942.
  • [89] T. Gutmann, G. Buntkowsky, Modern Magnetic Resonance, Springer, Cham, 2017, 1.
  • [90] L. Tensi, A. V Yakimov, C. Trotta, C. Domestici, J. De Jesus Silva, S. R. Docherty, C. Zuccaccia, C. Copéret, A. Macchioni, Inorg. Chem., 2022, 61, 10575.
  • [91] A. Venkatesh, A. Lund, L. Rochlitz, R. Jabbour, C. P. Gordon, G. Menzildjian, J. Viger-Gravel, P. Berruyer, D. Gajan, C. Copéret, A. Lesage, A. J. Rossini, J. Am. Chem. Soc., 2020, 142, 18936.
  • [92] T. Gutmann, J. Liu, N. Rothermel, Y. Xu, E. Jaumann, M. Werner, H. Breitzke, S. T. Sigurdsson, G. Buntkowsky, Chem. – A Eur. J., 2015, 21, 3798.
  • [93] K. W. Lipsø, S. Bowen, O. Rybalko, J. H. Ardenkjær-Larsen, J. Magn. Reson., 2017, 274, 65.
  • [94] M. D. Lingwood, T. A. Siaw, N. Sailasuta, O. A. Abulseoud, H. R. Chan, B. D. Ross, P. Bhattacharya, S. Han, Radiology, 2012, 265, 418.
  • [95] J. Kurhanewicz, D. B. Vigneron, J. H. Ardenkjaer-Larsen, J. A. Bankson, K. Brindle, C. H. Cunningham, F. A. Gallagher, K. R. Keshari, A. Kjaer, C. Laustsen, D. A. Mankoff, M. E. Merritt, S. J. Nelson, J. M. Pauly, P. Lee, S. Ronen, D. J. Tyler, S. S. Rajan, D. M. Spielman, L. Wald, X. Zhang, C. R. Malloy, R. Rizi, Neoplasia, 2019, 21, 1.
  • [96] H. Gutte, A. E. Hansen, H. H. Johannesen, A. E. Clemmensen, J. H. Ardenkjær-Larsen, C. H. Nielsen, A. Kjær, Am. J. Nucl. Med. Mol. Imaging, 2015, 5, 548.
  • [97] M. A. Schroeder, H. J. Atherton, D. R. Ball, M. A. Cole, L. C. Heather, J. L. Griffin, K. Clarke, G. K. Radda, D. J. Tyler, FASEB J., 2009, 23, 2529.
  • [98] C. R. Bowers, D. P. Weitekamp, J. Am. Chem. Soc., 1987, 109, 5541.
  • [99] R. W. Adams, J. A. Aguilar, K. D. Atkinson, M. J. Cowley, P. I. P. Elliott, S. B. Duckett, G. G. R. Green, I. G. Khazal, J. López-Serrano, D. C. Williamson, Science, 2009, 323, 1708.
  • [100] T. C. Eisenschmid, R. U. Kirss, P. P. Deutsch, S. I. Hommeltoft, R. Eisenberg, J. Bargon, R. G. Lawler, A. L. Balch, J. Am. Chem. Soc., 1987, 109, 8089.
  • [101] C. R. Bowers, D. P. Weitekamp, Phys. Rev. Lett., 1986, 57, 2645.
  • [102] M. G. Pravica, D. P. Weitekamp, Chem. Phys. Lett., 1988, 145, 255.
  • [103] A. Farkas, No Title, University Press, Cambridge, 1935.
  • [104] X. Zhang, T. Karman, G. C. Groenenboom, A. van der Avoird, Nat. Sci., 2021, 1, e10002.
  • [105] M. Matsumoto, J. H. Espenson, J. Am. Chem. Soc., 2005, 127, 11447.
  • [106] G. Buntkowsky, B. Walaszek, A. Adamczyk, Y. Xu, H.-H. Limbach, B. Chaudret, Phys. Chem. Chem. Phys., 2006, 8, 1929.
  • [107] A. B. Schmidt, C. R. Bowers, K. Buckenmaier, E. Y. Chekmenev, H. de Maissin, J. Eills, F. Ellermann, S. Glöggler, J. W. Gordon, S. Knecht, I. V Koptyug, J. Kuhn, A. N. Pravdivtsev, F. Reineri, T. Theis, K. Them, J.-B. Hövener, Anal. Chem., 2022, 94, 479.
  • [108] J. Natterer, J. Bargon, Prog. Nucl. Magn. Reson. Spectrosc., 1997, 31, 293.
  • [109] D. A. Barskiy, S. Knecht, A. V Yurkovskaya, K. L. Ivanov, Prog. Nucl. Magn. Reson. Spectrosc., 2019, 114–115, 33.
  • [110] R. W. Adams, S. B. Duckett, R. A. Green, D. C. Williamson, G. G. R. Green, J. Chem. Phys., 2009, 131, 194505.
  • [111] J. Bargon, The Handbook of Homogeneous Hydrogenation, ed. J. G. de Vries and C. J. Elsevier, Wiley, Weinheim, 2006, 313.
  • [112] B. J. Tickner, V. V Zhivonitko, Chem. Sci., 2022, 13, 4670.
  • [113] M. J. Cowley, R. W. Adams, K. D. Atkinson, M. C. R. Cockett, S. B. Duckett, G. G. R. Green, J. A. B. Lohman, R. Kerssebaum, D. Kilgour, R. E. Mewis, J. Am. Chem. Soc., 2011, 133, 6134.
  • [114] A. N. Pravdivtsev, J.-B. Hövener, Chem. – A Eur. J., 2019, 25, 7659.
  • [115] E. V Pokochueva, D. B. Burueva, O. G. Salnikov, I. V Koptyug, ChemPhysChem 2021, 22, 1421.
  • [116] K. V Kovtunov, O. G. Salnikov, I. V Skovpin, N. V Chukanov, D. B. Burueva, I. V Koptyug, Pure Appl. Chem., 2020, 92, 1029.
  • [117] S. B. Duckett, C. J. Sleigh, Prog. Nucl. Magn. Reson. Spectrosc., 1999, 34, 71.
  • [118] S. B. Duckett, C. L. Newell, R. Eisenberg, J. Am. Chem. Soc. 1994, 116, 10548.
  • [119] A. Harthun, R. Selke, J. Bargon, Angew. Chemie Int. Ed., 1996, 35, 2505.
  • [120] J.-B. Hövener, A. N. Pravdivtsev, B. Kidd, C. R. Bowers, S. Glöggler, K. V Kovtunov, M. Plaumann, R. Katz-Brull, K. Buckenmaier, A. Jerschow, F. Reineri, T. Theis, R. V Shchepin, S. Wagner, P. Bhattacharya, N. M. Zacharias, E. Y. Chekmenev, Angew. Chemie Int. Ed., 2018, 57, 11140.
  • [121] F. Reineri, Anal. Sens., 2022, e202200028.
  • [122] S. Aime, D. L. Longo, F. Reineri, S. Geninatti Crich, J. Magn. Reson., 2022, 338, 107198.
  • [123] F. Reineri, E. Cavallari, C. Carrera, S. Aime, Magn. Reson. Mater. Physics, Biol. Med., 2021, 34, 25.
  • [124] K. Golman, O. Axelsson, H. Jóhannesson, S. Månsson, C. Olofsson, J. S. Petersson, Magn. Reson. Med., 2001, 46, 1.
  • [125] T. Trantzschel, J. Bernarding, M. Plaumann, D. Lego, T. Gutmann, T. Ratajczyk, S. Dillenberger,G. Buntkowsky, J. Bargon, U. Bommerich, Phys. Chem. Chem. Phys., 2012, 14, 5601.
  • [126] G. Sauer, D. Nasu, D. Tietze, T. Gutmann, S. Englert, O. Avrutina, H. Kolmar, G. Buntkowsky, Angew. Chemie Int. Ed., 2014, 53, 12941.
  • [127] M. Körner, G. Sauer, A. Heil, D. Nasu, M. Empting, D. Tietze, S. Voigt, H. Weidler, T. Gutmann, O. Avrutina, H. Kolmar, T. Ratajczyk, G. Buntkowsky, Chem. Commun., 2013, 49, 7839.
  • [128] T. Trantzschel, M. Plaumann, J. Bernarding, D. Lego, T. Ratajczyk, S. Dillenberger, G. Buntkowsky, J. Bargon, U. Bommerich, Appl. Magn. Reson., 2013, 44, 267.
  • [129] L. Buljubasich, M. B. Franzoni, K. Münnemann, Parahydrogen-Induced Polarization in Heterogeneous Catalytic Processes, Springer Berlin Heidelberg, 2013, 338, 33.
  • [130] R. V Shchepin, A. M. Coffey, K. W. Waddell, E. Y. Chekmenev, J. Phys. Chem. Lett., 2012, 3, 3281.
  • [131] M. Ahlquist, M. Gustafsson, M. Karlsson, M. Thaning, O. Axelsson, O. F. Wendt, Inorganica Chim. Acta, 2007, 360, 1621.
  • [132] T. E. Crozier, S. Yamamoto, J. Chem. Eng. Data, 1974, 19, 242.
  • [133] Purwanto, R. M. Deshpande, R. V Chaudhari, H. Delmas, J. Chem. Eng. Data, 1996, 41, 1414.
  • [134] K. V. Kovtunov, V.V. Zhivonitko, I. V.Skovpin, D. A. Barskiy, I. V. Koptyug, Parahydrogen-Induced Polarization in Heterogeneous Catalytic Processes, Springer Berlin, Heidelberg, 2013, 338, 123.
  • [135] L.-S. Bouchard, K. V. Kovtunov, S. R. Burt, M. S. Anwar, I. V. Koptyug, R. Z. Sagdeev, A. Pines, Angew. Chemie Int. Ed., 2007, 46, 4064.
  • [136] I. V Koptyug, K. V Kovtunov, S. R. Burt, M. S. Anwar, C. Hilty, S.-I. Han, A. Pines, R. Z. Sagdeev, J. Am. Chem. Soc., 2007, 129, 5580.
  • [137] R. Sharma, L.-S. Bouchard, Sci. Rep., 2012, 2, 277.
  • [138] T. Gutmann, T. Ratajczyk, Y. Xu, H. Breitzke, A. Grünberg, S. Dillenberger, U. Bommerich, T. Trantzschel, J. Bernarding, G. Buntkowsky, Solid State Nucl. Magn. Reson., 2010, 38, 90.
  • [139] S. Abdulhussain, H. Breitzke, T. Ratajczyk, A. Grünberg, M. Srour, D. Arnaut, H. Weidler, U. Kunz, H. J. Kleebe, U. Bommerich, J. Bernarding, T. Gutmann, G. Buntkowsky, Chem. - A Eur. J., 2014, 20, 1159.
  • [140] A. Grünberg, X. Yeping, H. Breitzke, G. Buntkowsky, Chem. – A Eur. J., 2010, 16, 6993.
  • [141] W. Iali, S. S. Roy, B. J. Tickner, F. Ahwal, A. J. Kennerley, S. B. Duckett, Angew. Chemie Int. Ed., 2019, 58, 10271.
  • [142] B. J. Tickner, W. Iali, S. S. Roy, A. C. Whitwood, S. B. Duckett, ChemPhysChem 2019, 20, 241.
  • [143] P. J. Rayner, M. J. Burns, A. M. Olaru, P. Norcott, M. Fekete, G. G. R. Green, L. A. R. Highton, R. E. Mewis, S. B. Duckett, Proc. Natl. Acad. Sci. U. S. A., 2017, 114, E3188.
  • [144] P. J. Rayner, S. B. Duckett, Angew. Chemie Int. Ed., 2018, 57, 6742.
  • [145] J.-B. Hövener, N. Schwaderlapp, R. Borowiak, T. Lickert, S. B. Duckett, R. E. Mewis, R. W. Adams, M. J. Burns, L. A. R. Highton, G. G. R. Green, A. Olaru, J. Hennig, D. von Elverfeldt, Anal. Chem., 2014, 86, 1767.
  • [146] P. J. Rayner, P. Norcott, K. M. Appleby, W. Iali, R. O. John, S. J. Hart, A. C. Whitwood, S. B. Duckett, Nat. Commun., 2018, 9, 4251.
  • [147] R. V Shchepin, D. A. Barskiy, D. M. Mikhaylov, E. Y. Chekmenev, Bioconjugate Chem., 2016, 27, 878.
  • [148] T. B. R. Robertson, N. Gilbert, O. B. Sutcliffe, R. E. Mewis, ChemPhysChem, 2021, 22, 1059.
  • [149] R. V Shchepin, D. A. Barskiy, A. M. Coffey, T. Theis, F. Shi, W. S. Warren, B. M. Goodson, E. Y. Chekmenev, ACS Sens., 2016, 1, 640.
  • [150] D. A. Barskiy, R. V Shchepin, A. M. Coffey, T. Theis, W. S. Warren, B. M. Goodson, E. Y. Chekmenev, J. Am. Chem. Soc., 2016, 138, 8080.
  • [151] R. V Shchepin, J. R. Birchall, N. V Chukanov, K. V Kovtunov, I. V Koptyug, T. Theis, W. S. Warren, J. G. Gelovani, B. M. Goodson, S. Shokouhi, M. S. Rosen, Y.-F. Yen, W. Pham, E. Y. Chekmenev, Chem. – A Eur. J., 2019, 25, 8829.
  • [152] A. S. Kiryutin, A. V Yurkovskaya, K. L. Ivanov, ChemPhysChem, 2021, 22, 1470.
  • [153] B. Procacci, S. S. Roy, P. Norcott, N. Turner, S. B. Duckett, J. Am. Chem. Soc., 2018, 140, 16855.
  • [154] A. Blencowe, W. Hayes, Soft Matter, 2005, 1, 178.
  • [155] R. E. Mewis, R. A. Green, M. C. R. Cockett, M. J. Cowley, S. B. Duckett, G. G. R. Green, R. O. John, P. J. Rayner, D. C. Williamson, J. Phys. Chem. B, 2015, 119, 1416.
  • [156] W. Iali, P. J. Rayner, A. Alshehri, A. J. Holmes, A. J. Ruddlesden, S. B. Duckett, Chem. Sci., 2018, 9, 3677.
  • [157] W. Iali, P. J. Rayner, S. B. Duckett, Sci. Adv., 2022, 4, eaao6250.
  • [158] P. M. Richardson, W. Iali, S. S. Roy, P. J. Rayner, M. E. Halse, S. B. Duckett, Chem. Sci., 2019, 10, 10607.
  • [159] B. J. Tickner, O. Semenova, W. Iali, P. J. Rayner, A. C. Whitwood, S. B. Duckett, Catal. Sci. Technol., 2020, 10, 1343.
  • [160] H. Zeng, J. Xu, J. Gillen, M. T. McMahon, D. Artemov, J.-M. Tyburn, J. A. B. Lohman, R. E. Mewis, K. D. Atkinson, G. G. R. Green, S. B. Duckett, P. C. M. van Zijl, J. Magn. Reson., 2013, 237, 73.
  • [161] T. Ratajczyk, T. Gutmann, P. Bernatowicz, G. Buntkowsky, J. Frydel, B. Fedorczyk, Chem. – A Eur. J., 2015, 21, 12616.
  • [162] A. M. Olaru, M. J. Burns, G. G. R. Green, S. B. Duckett, Chem. Sci., 2017, 8, 2257.
  • [163] T. Ratajczyk, G. Buntkowsky, T. Gutmann, B. Fedorczyk, A. Mames, M. Pietrzak, Z. Puzio, P. G. Szkudlarek, ChemBioChem, 2021, 22, 855.
  • [164] C. L. Denholt, P. R. Hansen, N. Pedersen, H. S. Poulsen, N. Gillings, A. Kjær, Biopolymers, 2009, 91, 201.
  • [165] F. Shi, P. He, Q. Best, K. A. Groome, M. L. Truong, A. M. Coffey, G. Zimay, R. V Shchepin, K. W. Waddell, E. Y. Chekmenev, B. M. Goodson, J. Phys. Chem. C, 2016, 120, 12149.
  • [166] J. F. P. Colell, M. Emondts, A. W. J. Logan, K. Shen, J. Bae, R. V Shchepin, G. X. Ortiz, P. Spannring, Q. Wang, S. J. Malcolmson, E. Y. Chekmenev, M. C. Feiters, F. P. J. T. Rutjes, B Bluemich, T. Theis, J. Am. Chem. Soc., 2017, 139, 7761.
  • [167] M. Fekete, C. Gibard, G. J. Dear, G. G. R. Green, A. J. J. Hooper, A. D. Roberts, F. Cisnetti, S. B. Duckett, Dalt. Trans., 2015, 44, 7870.
  • [168] P. Spannring, I. Reile, M. Emondts, P. P. M. Schleker, N. K. J. Hermkens, N. G. J. van der Zwaluw, B. J. A. van Weerdenburg, P. Tinnemans, M. Tessari, B. Blümich, F. P. J. T. Rutjes, M. C. Feiters, Chem. - Eur. J., 2016, 22, 9277.
  • [169] F. Shi, A. M. Coffey, K. W. Waddell, E. Y. Chekmenev, B. M. Goodson, Angew. Chemie Int. Ed., 2014, 53, 7495.
  • [170] F. Shi, A. M. Coffey, K. W. Waddell, E. Y. Chekmenev, B. M. Goodson, J. Phys. Chem. C, 2015, 119, 7525.
  • [171] K. V Kovtunov, L. M. Kovtunova, M. E. Gemeinhardt, A. V Bukhtiyarov, J. Gesiorski, V. I. Bukhtiyarov, E. Y. Chekmenev, I. V Koptyug, B. M. Goodson, Angew. Chemie Int. Ed., 2017, 56, 10433.
  • [172] T. B. R. Robertson, L. J. Clarke, R. E. Mewis, Molecules, 2022, 27, 27020332.
  • [173] D. A. Barskiy, L. A. Ke, X. Li, V. Stevenson, N. Widarman, H. Zhang, A. Truxal, A. Pines, J. Phys. Chem. Lett., 2018, 9, 2721.
  • [174] W. Iali, A. M. Olaru, G. G. R. Green, S. B. Duckett, Chem. – A Eur. J., 2017, 23, 10491.B. E. Kidd, J. L. Gesiorski, M. E. Gemeinhardt, R. V Shchepin, K. V Kovtunov, I. V Koptyug, E. Y. Chekmenev, B. M. Goodson, J. Phys. Chem. C, 2018, 122, 16848.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8ed46c0a-6178-4a36-8789-24026623c2ba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.