PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microhardness Evolution in Relation to the Crystalline Microstructure of Aluminum Alloy AA3004

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Equal-channel angular pressing (ECAP) was used as a technique for severe plastic deformation (SPD) on Al alloy AA3004. This technique produced fully dense materials of refined grain structure to sub-micrometer dimensions and advanced mechanical properties. The ECAP processing of samples was conducted as 1 to 4 passes through the die at room temperature. We present the results of the studied homogeneity evolution with the ECAP treatment. Furthermore, a Scanning Electron Microscope (SEM) was used for examination of the microstructure changes in samples undergone from 1 to 4 passes. The microhardness-HV increased upon each ECAP pass. The resulting micro-hardness evolution was attributed to crystalline microstructure modifications, such as the d-spacing (studied by X-ray Diffraction-XRD) depending on the number of ECAP pressings. The microcrystalline changes (grain refining evaluated from the Scanning Electron Microscopy - SEM images) were found to be related to the HV, following the Hall-Petch equation.
Słowa kluczowe
Twórcy
autor
  • University of Tetovo, Tetovo, Department of Physics, Faculty of Natural Sciences and Mathematics, Republic of Macedonia
autor
  • University of Tetovo, Tetovo, Department of Physics, Faculty of Natural Sciences and Mathematics, Republic of Macedonia
  • Polytechnic University Of Tirana Department Of Physics, Tirana, Albania
autor
  • Ss. Cyril and Methodius University, Institute of Chemistry, Faculty of Natural Sciences And Mathematics, Skopje, Republic of Macedonia
  • Ss. Cyril And Methodius University, Institute of Physics, Faculty of Natural Sciences and Mathematics, Skopje, Republic of Macedonia
Bibliografia
  • [1] R. Z. Valiev, T. G. Langdon, Progress in Materials Science 51, 881-981 (2006).
  • [2] M. Furukawa, Z. Horita, M. Nemoto, R. Z. Valiev, T. G. Langdon, Acta Mater. 44, 4619-29 (1996).
  • [3] M. Kawasaki, Z. Horita, T. G. Langdon, Material Science and Engineering A 524, 143-150 (2009).
  • [4] A. Loucif, R. B. Figueiredo, Th. Baudinc, F. Brisset, R. Chemama, T. G. Langdond, Materials Science and Engineering A 527, 4864-4869 (2010).
  • [5] A. Loucif, R. B. Figueiredo, Th. Baudinc, F. Brisset, R. Chemama, T. G. Langdond, Materials Science and Engineering A 532, 139-145 (2012).
  • [6] O. E. Hall, Proceedings of the Royal Society B 64, 747-753 (1951).
  • [7] N. J. Patch, Iron Steel International 174, 25-28 (1953).
  • [8] Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, T. G. Langdon, Scripta Materialia 35, 143-145 (1996).
  • [9] A. Vevecka, P. Cavaliere, M. Cabbibo, E. Evangelista, T. G. Langdon, Journal of Materials Science Letters 20, 1601-1603 (2001).
  • [10] R. Z. Valiev, I. V. Islamgaliev, I. V. Alexandrov, Progress in Materials Science 45, 103-189 (2000).
  • [11] V. M. Segal: Material Science and Engineering A 271, 322-333 (1999).
  • [12] T. Kvackaj, J. Bidulska, M. Fujda, R. Kocisko, I. Pokorny, O. Milkovic, Materials Science Forum 633-634, 273-302 (2010).
  • [13] T. Kvackaj, R. Kocisko, J. Bidulska, R. Bidulský, J. Dutkiewicz, Chemicke Listy 105, 514-516 (2011).
  • [14] T. Kvačkaj, R. Kočiško, I. Pokorný, J. Bidulská, M. Kvačkaj, A. Kováčová, R. Bidulský, L. Litynska-Dobrzynska, J. Dutkiewicz, Acta Physica Polonica A 122, 557-560 (2012).
  • [15] R. Bidulsky, J. Bidulska, M. Actis Grande, Chemicke Listy 106, 375-376 (2012).
  • [16] A. Vevecka- Priftaj, A. Böhner, J. May, H. W. Höppel, M. Göken, Materials Science Forum 741, 584-586 (2008).
  • [17] T. G. Langdon, Materials Science and Engineering A 462, 3-11 (2007).
  • [18] C. Xu, S. Schroeder, P. Berbon, T. G. Langdon, Acta Materialia 58, 1379-1386 (2010).
  • [19] M. Prell, C. Xu, T. G. Langdon, Materials Science and Engineering A 480, 449-455 (2008).
  • [20] S. N. Alhajeri, N. Gao, T. G. Langdon, Materials Science and Engineering A 528, 3833-3840 (2011).
  • [21] S. L. Semiatin, D. P. DeLo, E. B. Shell, Acta Materialia 48, 1841-1851 (2000).
  • [22] M. A. Meyers, A. Mishra, D. J. Benson, Progress in Materials Science 51, 427-556 (2006).
  • [23] C. Xu, M. Furukawa, Z. Horita, T. G. Langdon, Materials Science and Engineering A 398, 66-76 (2005).
  • [24] N. Izairi, F. Ajredini, A. Veveçka-Priftaj, M. Ristova, Materials and Technology 48, 385-388 (2014).
  • [25] N. Izairi, F. Ajredini, M. Ristova, A. Vevecka-Priftaj, Acta Metalurgica Slovaca 19, 302-309 (2013).
  • [26] H. Paul, A. Morawiec, T. Baudin, T. Czeppe, Archives of Metallurgy and Materials 60, 131-144 (2015).
  • [27] H. Paul, T. Baudin, F. Brisset, A. Tarasek, Materials Science Forum 753, 239-242 (2013).
  • [28] F. J. Humphreys, Acta Metallurgica 25, 1323-1344 (1977).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8ed3b1bb-6850-4d65-910c-ea630a9efe6a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.