PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of the Microstructure and Mechanical Properties of Brazing Joints between Niobium and 316L Stainless Steel using Silver-Copper-Palladium Filler

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper introduces an approach for vacuum brazing of niobium-316L stainless steel transition joints for application in superconducting radiofrequency cavity helium jackets. The study takes advantage of good wettability of Ag-Cu-Pd brazing alloy to suppress brittle Fe-Nb intermetallic formation, hence improve the joints’ mechanical performance. The wettability of Ag-Cu-Pd filler metal on niobium, the interface microstructure and mechanical properties of the transition joints were investigated. Two kinds of Ag-Cu-Pd filler metals had been studied and wet well on the niobium, and the wettability of Ag-31.5Cu-10Pd filler metal on niobium was better than Ag-28Cu-20Pd filler metal. Microstructure characterization demonstrated the absence of brittle intermetallic layers in all of the joint interfaces. Mechanical properties of samples prepared with Ag-31.5Cu-10Pd filler metal were also better than their peers made with Ag-28Cu-20Pd filler metal both room temperature (300 K) and liquid nitrogen temperature (77 K). The transition joints displayed shear strengths of 356-375 MPa at 300 K and 440-457 MPa at 77 K, respectively. After undergoing ten thermal cycles between the room temperature and the liquid nitrogen temperature, the transition joints’ leak rates were all lower than 1.1×10-11mbar·L/s. Therefore, Ag-Cu-Pd filler metal is applicable to high vacuum vessels used at cryogenic temperatures.
Twórcy
autor
  • Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou, Gansu 730000, China
  • The Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, Guangdong 516000, China
  • Anhui East China Photoelectric Technology Research Institute, Wuhu, Anhui 241002, China
autor
  • Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou, Gansu 730000, China
  • The Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, Guangdong 516000, China
autor
  • Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou, Gansu 730000, China
  • The Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, Guangdong 516000, China
autor
  • Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou, Gansu 730000, China
  • The Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, Guangdong 516000, China
Bibliografia
  • [1] W.L. Zhan, Accelerator Driven Sustainable Fission Energy, in: Proceedings of 7th International Particle Accelerator Conference, Busan, Korea, 4271-4275 (2016). https://epaper.kek.jp/ipac2016/papers/fryaa03.pdf
  • [2] G.Q. Xiao, H.S. Xu, S.C. Wang, HIAF and CiADS National Research Facilities: Progress and Prospect, Nucl. Phys. Rev. 34, 275-283 (2017). DOI: https://doi.org/10.11804/NuclPhysRev.34.03.275
  • [3] S.H. Liu, Z.J. Wang, Y. Tao, Y. He, H. Jia, Z.P. Xie, W.P. Dou, W.L. Chen, W.S. Wang, Y.Z. Jia, C. Wang, Physics Design of the superconducting section of the CiADS linac, Int. J. Mod. Phys. A 34, 1950178 (2019). DOI: https://doi.org/10.1142/S0217751X19501781
  • [4] W.M. Yue, S.X. Zhang, C.L. Li, T.C. Jiang, L.B. Liu, R.X. Wang, Y.L. Huang, T. Tan, H. Guo, E. Zaplatin, P.R. Xiong, A.D. Wu, F.F. Wang, S.H. Zhang, S.C. Huang, Y. He, Z.E. Yao, H.W. Zhao, Design, fabrication and test of a taper-type half-wave superconducting cavity with the optimal beta of 0.15 at Imp, Nucl. Eng. Technol. 52, 1777-1783 (2020). DOI: https://doi.org/10.1016/j.net.2020.01.014
  • [5] E.A. Brandes, G.B. Brook, Smithells Metals Reference Book, 7th edn, Butterworth-Heinemann Oxford, 14.3-14.5 (2000).
  • [6] H. Kaiser, G. Meyer, H.B. Peters, G. Weichert, Helium Vessel for the TTF Cavity, TESLA Collaboration Report 94-26,1994.
  • [7] C. Grimm, T. Arkan, M. Foley, T. Khabiboulline, D. Watkins, 1.3 GHz RF Nb Cavity to Ti Helium Vessel TIG Welding Process at Fermi Lab, in: 14th International Conference on RF Superconductivity, Berlin, German, 669-671 (2009). https://accelconf.web.cern.ch/srf2009/papers/thppo041.pdf
  • [8] H. Saugnac, S. Rousselot, C. Commeaux, H. Gassot, T. Junquera, P. Bosland, H. Safa, Preliminary Design of Stainless Steel Helium Tank and its Associated Cold Tuning System for 700 MHz SCRF Cavities for Proton, in: Proceedings of the 10th Workshop on RF Superconductivity, Tsukuba, Japan, 540-542 (2001). https://accelconf.web.cern.ch/srf01/papers/pt022.pdf
  • [9] Y. Xie, Development of Superconducting RF Sample Host Cavities and Study of Pit-induced Cavity Quench, PhD thesis, Cornell University, (2013).
  • [10] B. Sabirov, J. Budagov, G. Shirkov, Y. Taran, Recent optimized design of ilc cryomodule with explosion welding technology, in: XXV Russian Particle Accelerator Conference, Petersburg, Russia, 141-143 (2016). https://accelconf.web.cern.ch/rupac2016/papers/thcdmh02.pdf
  • [11] B.M. Sabirov, J.A. Budagov, G.D. Shirkov, First samples of Ti and Nb tubes explosion welding joint with stainless steel for ILC 1.8 K cryomodule, Phys. Part. Nuclei 44, 728-756 (2013). DOI: https://doi.org/10.1134/S1063779613040059
  • [12] R.X. Wang, Y. He, T. Tan, X.P. Guo, J. Song, J.S. Ren, S.H. Zhang, X.Y. Zhang, Niobium-316L Stainless Steel Transition Joints for Superconducting Radiofrequency Cavities by Explosive Welding, Rare Metal. Mat. Eng. 48, 3876-3882 (2019). http://www.rmme.ac.cn/rmme/ch/reader/view_abstract.aspx?file_no=20181123&flag=1
  • [13] K. Saito, H. Inoue, H. Ao, N. Satoh, Stainless flange bonded to niobium tube and simple aluminum sealing, in: Proceedings of the 10th Workshop on RF Superconductivity, Tsukuba, Japan, 531-534 (2001). https://accelconf.web.cern.ch/srf01/papers/pt020.pdf
  • [14] J.D. Fuerst, W.F. Toter, K.W. Shepared, Niobium to stainless steel braze transition development, in: 11th Workshop on RF Superconductivity, Lubeck, German 305-307 (2003). https://accelconf.web.cern.ch/SRF2003/papers/tup11.pdf
  • [15] E.C. Reece, E.F. Daly, J. Henry, W.R. Hicks, J. Preble, H. Wang, G. Wu, Optimization of the srf cavity design for the cebaf 12gev upgrade, in:13th International Workshop on RF Superconductivity, Beijing, China, 536-539 (2007). https://accelconf.web.cern.ch/srf2007/PAPERS/WEP31.pdf
  • [16] L. Ristori, W. Toter, Development at anl of a copper-brazed joint for the coupling of the niobium cavity end wall to the stainless steel helium vessel in the fermilab ssr1 resonator, in: International Particle Accelerator Conference 2012, New Orleans, USA, 2345-2347 (2012). https://accelconf.web.cern.ch/IPAC2012/papers/weppc058.pdf
  • [17] O. Capatina, S. Atieh, I. Aviles Santillana, G. Arnau Izquierdo, R. Bonomi, S. Calatroni, J. Chambrillon, F. Gerigk, R. Garoby, M. Guinchard, T. Junginger, M. Malabaila, L. Marques Antunes Ferreira, S. Mikulas, V. Parma, F. Pillon, T. Renaglia, K. Schirm, T. Tardy, M. Therasse, A. Vacca, N. Valverde Alonso, A. Vande Craen, Cern developments for 704 mhz superconducting cavities, in: Proceedings of the16th International Conference on RF Superconductivity, Paris, France, 1198-1211 (2013). https://accelconf.web.cern.ch/SRF2013/papers/friob04.pdf=
  • [18] A. Kumar, P. Ganesh, R. Kaul, V.K. Bhatnagar, K. Yedle, P. Ram Sankar, A New Vacuum Brazing Route for Niobium-316L Stainless Steel Transition Joints for Superconducting RF Cavities, J. Mater. Eng. Perform. 24, 952-963 (2015). DOI: https://doi.org/10.1007/s11665-014-1312-1
  • [19] A.J. Palmer, C.J. Woolstenhulme, Brazing Refractory Metals used in High-temperature Nuclear Instrumentation, in: International Conference on Advancements in Nuclear Instrumentation Measurement Methods and their Applications, Marseille, France, 1-5 (2009). https://www.osti.gov/servlets/purl/961932
  • [20] D.W. Liaw, R.K. Shiue, Brazing of Ti-6Al-4V and Niobium Using Three Silver-Base Braze Alloys, Metal. Mater. Trans. A 36, 2415-2427 (2005). DOI: https://doi.org/10.1007/s11661-005-0114-3
  • [21] F.F. Guo, X.Y. Chen, X.M. Shi, Y.F. Qi, G.Q. Zhang, X.M. Huang, Y. Qi, Effect of Pd content on microstructure and properties of Ag-Cu-Pd solder, Nonferr. Met. Sci. Eng. 8, 64-68 (2017). DOI: https://doi.org/10.13264/j.cnki.ysjskx.2017.03.010
  • [22] Y.E. Li, T. Jiang, X.L. Sun, G. Ma, Brazing material used for common metal materials in vacuum electron devices, Hot Working Technology 39, 203-205 (2010). DOI: https://doi.org/10.14158/j.cnki.1001-3814.2010.23.061
  • [23] S. Nagassaki, M. Hirabaysshi, Binary Alloy Phase-diagrams, first edn, AGNE Gijutsu Center Co, Ltd, Tokyo, 35-36, 2002.
  • [24] R.X. Wang, Y.L Huang, T.C. Jiang, H. Guo, P.R. Xiong, T. Tan, W.M. Yue, Z.L. Zhang, Y. He, X.Y. Zhang, Microstructure and Mechanical Properties of Niobium and 316 L Stainless Steel Joints by TU1 Oxygen Free Copper Brazing, Rare Metal Materials and Engineering, Rare Metal. Mat. Eng. 50, 1166-1172 (2021). http://www.rmme.ac.cn/rmme/ch/reader/view_abstract.aspx?file_no=20200220&flag=1
Uwagi
1. The present work was supported by National Natural Science Foundation of China (Grant No. 12075295).
2. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8ece93c4-7fa0-46ba-b15c-a0a928a2b8a9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.