PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Positive solutions to mixed fractional p-Laplacian boundary value problems

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we discuss the existence and uniqueness of a positive solution for a p-Laplacian differential equation containing left and right Caputo derivatives. By the help of the Guo-Krasnoselskii theorem, we prove the existence of at least one positive solution. The existence of a unique positive solution is established under the assumption that the corresponding operator is α-concave and increasing. Numerical examples are given to check the obtained results.
Wydawca
Rocznik
Strony
49--58
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
  • Department of Mathematics, Faculty of Sciences, Badji Mokhtar-Annaba University, P.O. Box 12, 23000 Annaba, Algeria
  • Instituto de Matemáticas, Departamento de Estatística, Análise Matemática e Optimización, Facultade de Matemáticas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
Bibliografia
  • [1] B. Ahmad, S. K. Ntouyas and A. Alsaedi, Fractional order differential systems involving right Caputo and left Riemann-Liouville fractional derivatives with nonlocal coupled conditions, Bound. Value Probl. 2019 (2019), Paper No. 109.
  • [2] D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Fractional Calculus Models and Numerical Methods, World Scientific, Hackensack, 2012.
  • [3] T. Blaszczyk, A numerical solution of a fractional oscillator equation in a non-resisting medium with natural boundary conditions, Romanian Rep. Phys. 67 (2015), no. 2, 350-358.
  • [4] G. Chai, Positive solutions for boundary value problem of fractional differential equation with p-Laplacian operator, Bound. Value Probl. 2012 (2012), Paper No. 18.
  • [5] D. J. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Notes Rep. Math. Sci. Eng. 5, Academic Press, Boston, 1988.
  • [6] H. Jafari, D. Baleanu, H. Khan, R. A. Khan and A. Khan, Existence criterion for the solutions of fractional order p-Laplacian boundary value problems, Bound. Value Probl. 2015 (2015), Paper No. 164.
  • [7] R. Khaldi and A. Guezane-Lakoud, Higher ordre fractional boundry value problems for mixed type derivatives, J. Nonlinear Funct. Anal. 2017 (2017), Article ID 30.
  • [8] R. A. Khan and A. Khan, Existence and uniqueness of solutions for p-Laplacian fractional order boundary value problems, Comput. Methods Differ. Equ. 2 (2014), no. 4, 205-215.
  • [9] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Math. Stud. 204, Elsevier, Amsterdam, 2006.
  • [10] M. K. Kwong, On Krasnoselskii’s cone fixed point theorem, Fixed Point Theory Appl. 2008 (2008), Article ID 164537.
  • [11] L. S. Leibenson, General problem of the movement of a compressible fluid in a porous medium, Izv. Akad. Nauk Kirg. SSR Ser. Biol. Nauk 9 (1983), 7-10.
  • [12] J. S. Leszczynski and T. Blaszczyk, Modeling the transition between stable and unstable operation while emptying a silo, Granular Matter 13 (2011), 429-438.
  • [13] X. Liu, M. Jia and W. Ge, The method of lower and upper solutions for mixed fractional four-point boundary value problem with p-Laplacian operator, Appl. Math. Lett. 65 (2017), 56-62.
  • [14] X. Liu, M. Jia and X. Xiang, On the solvability of a fractional differential equation model involving the p-Laplacian operator, Comput. Math. Appl. 64 (2012), no. 10, 3267-3275.
  • [15] I. Merzoug, A. Guezane-Lakoud and R. Khaldi, Existence of solutions for a nonlinear fractional p-Laplacian boundary value problem, Rend. Circ. Mat. Palermo (2) 69 (2020), no. 3, 1099-1106.
  • [16] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
  • [17] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach Science, Yverdon, 1993.
  • [18] Y. Wang, Multiple positive solutions for mixed fractional differential system with p-Laplacian operators, Bound. Value Probl. 2019 (2019), Paper No. 144.
  • [19] J. Xu and D. O’Regan, Positive solutions for a fractional p-Laplacian boundary value problem, Filomat 31 (2017), no. 6, 1549-1558.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8ecb6c84-a119-427a-bbb2-1d84368f81f1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.