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A novel 3-D jerk chaotic system with three quadratic
nonlinearities and its adaptive control

SUNDARAPANDIAN VAIDYANATHAN

This paper announces an eight-term novel 3-D jerk chaotic system with three quadratic
nonlinearities. The phase portraits of the novel jerk chaotic system are displayed and the qual-
itative properties of the jerk system are described. The novel jerk chaotic system has two equi-
librium points, which are saddle-foci and unstable. The Lyapunov exponents of the novel jerk
chaotic system are obtained as L1 = 0.20572,L2 = 0 and L3 = −1.20824. Since the sum of
the Lyapunov exponents of the jerk chaotic system is negative, we conclude that the chaotic
system is dissipative. The Kaplan-Yorke dimension of the novel jerk chaotic system is derived
as DKY = 2.17026. Next, an adaptive controller is designed via backstepping control method
to globally stabilize the novel jerk chaotic system with unknown parameters. Moreover, an
adaptive controller is also designed via backstepping control method to achieve global chaos
synchronization of the identical jerk chaotic systems with unknown parameters. The backstep-
ping control method is a recursive procedure that links the choice of a Lyapunov function with
the design of a controller and guarantees global asymptotic stability of strict feedback systems.
MATLAB simulations have been depicted to illustrate the phase portraits of the novel jerk
chaotic system and also the adaptive backstepping control results.

Key words: chaos, chaotic system, dissipative chaotic system, adaptive control, backstep-
ping control, synchronization.

1. Introduction

Chaos theory describes the qualitative study of unstable aperiodic behavior in deter-
ministic nonlinear dynamical systems. A dynamical system is called chaotic if it satisfies
the three properties: boundedness, infinite recurrence and sensitive dependence on initial
conditions [1].

A significant development in chaos theory occurred when Lorenz discovered a 3-D
chaotic system of a weather model [2]. Subsequently, Rössler discovered a 3-D chaotic
system in 1976 [3], which is algebraically simpler than the Lorenz system. Indeed,
Lorenz’s system is a seven-term chaotic system with two quadratic nonlinearities, while
Rössler’s system is a seven-term chaotic system with just one quadratic nonlinearity.
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Some well-known paradigms of 3-D chaotic systems are Arneodo system [4], Sprott
systems [5], Chen system [6], Hénon-Heiles system [7], Lü-Chen system [8], Liu sys-
tem [9], Cai system [10], T-system [11], etc. Many new chaotic systems have been also
discovered like Li system [12], Sundarapandian systems [13, 14], Vaidyanathan systems
[15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30], Pehlivan system [31], Tacha
system [32], Jafari system [33], Sampath system [34], Pham systems [35, 36, 37, 38],
etc.

Chaos theory has applications in several fields of science and engineering such as
oscillators [39, 40, 41, 42, 43, 44, 45, 46], dynamos [47, 48, 49, 50], Tokamak systems
[51, 52], chemical reactions [53, 54, 55, 56, 57, 58, 59, 60, 61, 62], neural networks
[63, 64, 65, 66, 67, 68], neurology [69, 70, 71, 72, 73, 74], biology [75, 76, 77, 78,
79, 80, 81, 82, 83], electrical circuits [84, 85, 86], cryptosystems [87, 88], memristors
[89, 90, 91], random bit generator [92], etc.

In this paper, we announce an eight-term novel 3-D jerk chaotic system with three
quadratic nonlinearities. The phase portraits of the novel jerk chaotic system are dis-
played and the mathematical properties are discussed. The novel jerk chaotic system has
two equilibrium points, which are saddle-foci and unstable.

The Lyapunov exponents of the novel jerk chaotic system are obtained as L1 =
0.20572,L2 = 0 and L3 = −1.20824. Since the sum of the Lyapunov exponents of the
jerk chaotic system is negative, we conclude that the chaotic system is dissipative. The
Kaplan-Yorke dimension of the novel jerk chaotic system is derived as DKY = 2.17026.

Next, using backstepping control method, we derive an adaptive control law that
stabilizes the novel conservative chaotic system, when the system parameters are un-
known. Using backstepping control method, we also derive an adaptive control law that
achieves global chaos synchronization of the identical novel conservative systems with
unknown parameters. The backstepping control method is a recursive procedure that
links the choice of a Lyapunov function with the design of a controller and guarantees
global asymptotic stability of strict feedback systems.

Synchronization of chaotic systems is a phenomenon that may occur when a chaotic
oscillator drives another chaotic oscillator. Because of the butterfly effect which causes
the exponential divergence of the trajectories of two identical chaotic systems started
with nearly the same initial conditions, synchronizing two chaotic systems is seemingly
a very challenging problem.

In most of the synchronization approaches, the master-slave or drive-response for-
malism is used. If a particular chaotic system is called the master or drive system and
another chaotic system is called the slave or response system, then the idea of synchro-
nization is to use the output of the master system to control the response of the slave
system so that the slave system tracks the output of the master system asymptotically.

In the chaos literature, an impressive variety of techniques have been proposed
for chaos synchronization such as active control method [93, 94, 95, 96, 97], adap-
tive control method [98, 99, 100, 101, 102, 103, 104, 105, 106, 107], backstep-
ping control method [108, 109, 110, 111, 112, 113], sliding mode control method
[114, 115, 116, 117, 118, 119], etc.
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All the main adaptive backstepping control results in this paper are proved using Lya-
punov stability theory [120]. MATLAB simulations are depicted to illustrate the phase
portraits of the novel jerk chaotic system, adaptive stabilization and synchronization re-
sults for the novel 3-D jerk chaotic system.

2. A 3-D novel jerk chaotic system

In this section, we describe an eight-term novel 3-D jerk chaotic system with three
quadratic nonlinearities, which is described by the dynamics

ẋ1 = x2

ẋ2 = x3

ẋ3 = ax1 −bx2 − x3 + cx1x2 − p(x2
1 + x2

2)

(1)

where x1,x2,x3 are the states and a,b,c, p are constant, positive, parameters of the sys-
tem.

The system (1) exhibits a strange chaotic attractor for the values

a = 7.5, b = 4, c = 0.03, p = 0.9 (2)

For numerical simulations, we take the initial conditions of the state x(t) as

x1(0) = 1.8, x2(0) = 1.3, x3 = 1.6 (3)

Figure 1 shows the 3-D phase portrait of the strange chaotic attractor of the system
(1). Figures 2–4 show the 2-D projection of the strange chaotic attractor of the system
(1) on (x1,x2),(x2,x3) and (x1,x3) planes, respectively.

3. Analysis of the 3-D novel jerk chaotic system

3.1. Dissipativity

In vector notation, the new jerk system (1) can be expressed as

ẋxx = f (xxx) =

 f1(x1,x2,x3)

f2(x1,x2,x3)

f3(x1,x2,x3)

 , (4)

where 
f1(x1,x2,x3) = x2

f2(x1,x2,x3) = x3

f3(x1,x2,x3) = ax1 −bx2 − x3 + cx1x2 − p(x2
1 + x2

2)

(5)
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Figure 1. Strange attractor of the 3-D novel jerk chaotic System
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Figure 2. 2-D projection of the novel jerk chaotic system on the (x1,x2) plane
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Figure 3. 2-D projection of the novel jerk chaotic system on the (x2,x3) plane
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Figure 4. 2-D projection of the novel jerk chaotic system on the (x1,x3) plane
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Let Ω be any region in ℜ3 with a smooth boundary and also, Ω(t) = Φt(Ω), where
Φt is the flow of f . Furthermore, let V (t) denote the volume of Ω(t).

By Liouville’s theorem, we know that

V̇ (t) =
∫

Ω(t)

(∇ · f )dx1 dx2 dx3 (6)

The divergence of the novel jerk system (4) is found as:

∇ · f =
∂ f1

∂x1
+

∂ f2

∂x2
+

∂ f3

∂x3
=−1 < 0 (7)

Inserting the value of ∇ · f from (7) into (6), we get

V̇ (t) =
∫

Ω(t)

(−1)dx1 dx2 dx3 =−V (t) (8)

Integrating the first order linear differential equation (8), we get

V (t) = exp(−t)V (0) (9)

From Eq. (9), it is clear that V (t) → 0 exponentially as t → ∞. This shows that
the novel 3-D jerk chaotic system (1) is dissipative. Hence, the system limit sets are
ultimately confined into a specific limit set of zero volume, and the asymptotic motion
of the novel jerk chaotic system (1) settles onto a strange attractor of the system.

3.2. Equilibrium Points

The equilibrium points of the 3-D novel jerk chaotic system (1) are obtained by
solving the equations

f1(x1,x2,x3) = x2 = 0
f2(x1,x2,x3) = x3 = 0
f3(x1,x2,x3) = ax1 −bx2 − x3 + cx1x2 − p(x2

1 + x2
2) = 0

 (10)

We take the parameter values as in the chaotic case (2), i.e.

a = 7.5, b = 4, c = 0.03, p = 0.9 (11)

Thus, the equilibrium points of the system (1) are characterized by the equations

x1(a− px1) = 0, x2 = 0, x3 = 0 (12)

Solving the system (12), we get the equilibrium points of the system (1) as

E0 =

 0
0
0

 and E1 =

 8.3333
0
0

 (13)
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To test the stability type of the equilibrium points E0 and E1, we calculate the Jaco-
bian matrix of the novel jerk chaotic system (1) at any point xxx:

J (xxx) =

 0 1 0
0 0 1

7.5+0.03x2 −1.8x1 −4+0.03x1 −1.8x2 −1

 (14)

We note that

J0
∆
= J(E0) =

 0 1 0
0 0 1

7.5 −4 −1

 (15)

which has the eigenvalues

λ1 = 1.1555, λ2,3 =−1.0778±2.3085 i (16)

This shows that the equilibrium point E0 is a saddle-focus point.
Next, we note that

J1
∆
= J(E1) =

 0 1 0
0 0 1

−7.4999 −3.7500 −1

 (17)

which has the eigenvalues

λ1 =−1.5956, λ2,3 = 0.2978±2.1475 i (18)

This shows that the equilibrium point E1 is also a saddle-focus point.
Hence, the novel jerk chaotic system (1) has two equilibrium points E0,E1 defined

by (13), which are saddle-foci and unstable.

3.3. Lyapunov exponents and Kaplan-Yorke dimension

We take the parameter values of the novel jerk system (1) as

a = 7.5, b = 4, c = 0.03, p = 0.9 (19)

Then the Lyapunov exponents are numerically obtained using MATLAB as

L1 = 0.20572, L2 = 0, L3 =−1.20824 (20)

Thus, the maximal Lyapunov exponent (MLE) of the novel jerk system (1) is posi-
tive, which means that the system has a chaotic behavior.

Since L1+L2+L3 =−1.00252 < 0, it follows that the novel jerk chaotic system (1)
is dissipative.

Also, the Kaplan-Yorke dimension of the novel jerk chaotic system (1) is obtained
as

DKY = 2+
L1 +L2

|L3|
= 2.17026, (21)

which is fractional.
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4. Adaptive control of the 3-D novel jerk chaotic system

In this section, we use backstepping control method to derive an adaptive feedback
control law for globally stabilizing the 3-D novel jerk chaotic system with unknown
parameters.

Thus, we consider the 3-D novel jerk chaotic system given by
ẋ1 = x2

ẋ2 = x3

ẋ3 = ax1 −bx2 − x3 + cx1x2 − p(x2
1 + x2

2)+u

(22)

where a,b,c, p are unknown constant parameters, and u is a backstepping control law to
be determined using estimates of the unknown system parameters.

The parameter estimation errors are defined as:

ea(t) = a− â(t)

eb(t) = b− b̂(t)

ec(t) = c− ĉ(t)

ep(t) = p− p̂(t)

(23)

Differentiating (23) with respect to t, we obtain the following equations:

ėa(t) = − ˙̂a(t)

ėb(t) = − ˙̂b(t)

ėc(t) = − ˙̂c(t)

ėp(t) = − ˙̂p(t)

(24)

Next, we shall state and prove the main result of this section.

Theorem 1 The 3-D novel jerk chaotic system (22), with unknown parameters a and b,
is globally and exponentially stabilized by the adaptive feedback control law,

u(t) =−[3+ â(t)]x1 − [5− b̂(t)]x2 −2x3 − ĉ(t)x1x2 + p̂(t)(x2
1 + x2

2)− kz3 (25)

where k > 0 is a gain constant,

z3 = 2x1 +2x2 + x3, (26)
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and the update law for the parameter estimates â(t), b̂(t), ĉ(t), p̂(t) is given by

˙̂a(t) = x1z3

˙̂b(t) = −x2z3

˙̂c(t) = x1x2z3

˙̂p(t) = −(x2
1 + x2

2)z3

(27)

Proof We prove this result via backstepping control method and Lyapunov stability
theory.

First, we define a quadratic Lyapunov function

V1(z1) =
1
2

z2
1 (28)

where
z1 = x1 (29)

Differentiating V1 along the dynamics (22), we get

V̇1 = z1ż1 = x1x2 =−z2
1 + z1(x1 + x2) (30)

Now, we define
z2 = x1 + x2 (31)

Using (31), we can simplify the equation (30) as

V̇1 =−z2
1 + z1z2 (32)

Secondly, we define a quadratic Lyapunov function

V2(z1,z2) =V1(z1)+
1
2

z2
2 =

1
2
(
z2

1 + z2
2
)

(33)

Differentiating V2 along the dynamics (22), we get

V̇2 =−z2
1 − z2

2 + z2(2x1 +2x2 + x3) (34)

Now, we define
z3 = 2x1 +2x2 + x3 (35)

Using (35), we can simplify the equation (34) as

V̇2 =−z2
1 − z2

2 + z2z3 (36)

Finally, we define a quadratic Lyapunov function

V (z1,z2,z3,ea,eb,ec,ep) =V2(z1,z2)+
1
2

z2
3 +

1
2
(e2

a + e2
b + e2

c + e2
p) (37)
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which is a positive definite function on ℜ7.
Differentiating V along the dynamics (22), we get

V̇ =−z2
1 − z2

2 − z2
3 + z3(z3 + z2 + ż3)− ea ˙̂a− eb

˙̂b− ec ˙̂c− ep ˙̂p (38)

Eq. (38) can be written compactly as

V̇ =−z2
1 − z2

2 − z2
3 + z3S− ea ˙̂a− eb

˙̂b− ec ˙̂c− ep ˙̂p (39)

where
S = z3 + z2 + ż3 = z3 + z2 +2ẋ1 +2ẋ2 + ẋ3 (40)

A simple calculation gives

S = (3+a)x1 +(5−b)x2 +2x3 + cx1x2 − p(x2
1 + x2

2)+u (41)

Substituting the adaptive control law (25) into (41), we obtain

S = [a− â(t)]x1 − [b− b̂(t)]x2 +[c− ĉ(t)]x1x2 − [p− p̂(t)](x2
1 + x2

2)− kz3 (42)

Using the definitions (24), we can simplify (42) as

S = eax1 − ebx2 + ecx1x2 − ep(x2
1 + x2

2)− kz3 (43)

Substituting the value of S from (43) into (39), we obtain{
V̇ = −z1 − z2 − (1+ k)z2

3 + ea
[
x1z3 − ˙̂a

]
+ eb

[
−x2z3 − ˙̂b

]
+ec

[
x1x2z3 − ˙̂c

]
+ ep

[
−(x2

1 + x2
2)z3 − ˙̂p

] (44)

Substituting the update law (27) into (44), we get

V̇ =−z2
1 − z2

2 − (1+ k)z2
3, (45)

which is a negative semi-definite function on ℜ7.
From (45), it follows that the vector zzz(t) = (z1(t),z2(t),z3(t)) and the parameter

estimation error (ea(t),eb(t),ec(t),ep(t)) are globally bounded, i.e.[
z1(t) z2(t) z3(t) ea(t) eb(t) ec(t) ep(t)

]
∈ L∞ (46)

Also, it follows from (45) that

V̇ ¬−z2
1 − z2

2 − z2
3 =−∥z∥2 (47)

That is,
∥z∥2 ¬−V̇ (48)
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Integrating the inequality (48) from 0 to t, we get

t∫
0

|zzz(τ)|2 dτ¬V (0)−V (t) (49)

From (49), it follows that zzz(t) ∈ L2.
From Eq. (22), it can be deduced that żzz(t) ∈ L∞.
Thus, using Barbalat’s lemma, we conclude that zzz(t)→ 000 exponentially as t → ∞ for

all initial conditions zzz(0) ∈ ℜ3.
Hence, it is immediate that xxx(t)→ 000 exponentially as t → ∞ for all initial conditions

xxx(0) ∈ ℜ3.
This completes the proof.

For the numerical simulations, the classical fourth-order Runge-Kutta method with
step size h = 10−8 is used to solve the system of differential equations (22) and (27),
when the adaptive control law (25) is applied.

The parameter values of the novel jerk chaotic system (22) are taken as in the chaotic
case (2), i.e.

a = 7.5, b = 4, c = 0.03, p = 0.9 (50)

The positive gain constant k is taken as k = 10.
As initial conditions of the novel jerk chaotic system (22), we take

x1(0) = 6.2, x2(0) = 15.9, x3(0) = 9.7 (51)

Also, as initial conditions of the parameter estimates, we take

â(0) = 2.1, b̂(0) = 7.3, ĉ(0) = 5.4, p̂(0) = 8.6 (52)

In Figure 5, the exponential convergence of the controlled states is depicted, when
the adaptive control law (25) and parameter update law (27) are implemented.

5. Adaptive synchronization of the identical 3-D novel jerk chaotic systems

In this section, we use backstepping control method to derive an adaptive control
law for globally and exponentially synchronizing the identical 3-D novel jerk chaotic
systems with unknown parameters.

As the master system, we consider the 3-D novel jerk chaotic system given by
ẋ1 = x2

ẋ2 = x3

ẋ3 = ax1 −bx2 − x3 + cx1x2 − p(x2
1 + x2

2)

(53)
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Figure 5. Time-history of the controlled states x1(t),x2(t),x3(t)

where x1,x2,x3 are the states of the system, and a,b,c, p are unknown constant parame-
ters.

As the slave system, we consider the 3-D novel jerk chaotic system given by
ẏ1 = y2

ẏ2 = y3

ẏ3 = ay1 −by2 − y3 + cy1y2 − p(y2
1 + y2

2)+u

(54)

where y1,y2,y3 are the states of the system, and u is a backstepping control to be deter-
mined using estimates of the unknown system parameters.

We define the synchronization errors between the states of the master system (53)
and the slave system (54) as 

e1 = y1 − x1

e2 = y2 − x2

e3 = y3 − x3

(55)
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Then the error dynamics is easily obtained as
ė1 = e2

ė2 = e3

ė3 = ae1 −be2 − e3 + c(y1y2 − x1x2)

−p(y2
1 − x2

1 + y2
2 − x2

2)+u

(56)

The parameter estimation errors are defined as:

ea(t) = a− â(t)

eb(t) = b− b̂(t)

ec(t) = c− ĉ(t)

ep(t) = p− p̂(t)

(57)

Differentiating (57) with respect to t, we obtain the following equations:

ėa(t) = − ˙̂a(t)

ėb(t) = − ˙̂b(t)

ėc(t) = − ˙̂c(t)

ėp(t) = − ˙̂p(t)

(58)

Next, we shall state and prove the main result of this section.

Theorem 2 The identical 3-D novel jerk chaotic systems (53) and (54) with unknown
parameters a and b are globally and exponentially synchronized by the adaptive control
law  u(t) = −[3+ â(t)]e1 − [5− b̂(t)]e2 −2e3 − ĉ(t)[y1y2 − x1x2]

+p̂(t)[y2
1 − x2

1 + y2
2 − x2

2]− kz3
(59)

where k > 0 is a gain constant,

z3 = 2e1 +2e2 + e3, (60)

and the update law for the parameter estimates â(t), b̂(t) is given by

˙̂a(t) = e1z3

˙̂b(t) = −e2z3

˙̂c(t) = (y1y2 − x1x2)z3

˙̂p(t) = −(y2
1 − x2

1 + y2
2 − x2

2)z3

(61)
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Proof We prove this result via backstepping control method and Lyapunov stability
theory.

First, we define a quadratic Lyapunov function

V1(z1) =
1
2

z2
1 (62)

where
z1 = e1 (63)

Differentiating V1 along the error dynamics (56), we get

V̇1 = z1ż1 = e1e2 =−z2
1 + z1(e1 + e2) (64)

Now, we define
z2 = e1 + e2 (65)

Using (65), we can simplify the equation (64) as

V̇1 =−z2
1 + z1z2 (66)

Secondly, we define a quadratic Lyapunov function

V2(z1,z2) =V1(z1)+
1
2

z2
2 =

1
2
(
z2

1 + z2
2
)

(67)

Differentiating V2 along the error dynamics (56), we get

V̇2 =−z2
1 − z2

2 + z2(2e1 +2e2 + e3) (68)

Now, we define
z3 = 2e1 +2e2 + e3 (69)

Using (69), we can simplify the equation (68) as

V̇2 =−z2
1 − z2

2 + z2z3 (70)

Finally, we define a quadratic Lyapunov function

V (z1,z2,z3,ea,eb,ec,ep) =V2(z1,z2)+
1
2

z2
3 +

1
2
(
e2

a + e2
b + e2

c + e2
p
)

(71)

which is a positive definite function on ℜ7.
Differentiating V along the error dynamics (56), we get

V̇ =−z2
1 − z2

2 − z2
3 + z3(z3 + z2 + ż3)− ea ˙̂a− eb

˙̂b− ec ˙̂c− ep ˙̂p (72)

Eq. (72) can be written compactly as

V̇ =−z2
1 − z2

2 − z2
3 + z3S− ea ˙̂a− eb

˙̂b− ec ˙̂c− ep ˙̂p (73)
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where
S = z3 + z2 + ż3 = z3 + z2 +2ė1 +2ė2 + ė3 (74)

A simple calculation gives

S = (3+a)e1 +(5−b)e2 +2e3 + c(y1y2 − x1x2)− p(y2
1 − x2

1 + y2
2 − x2

2)+u (75)

Substituting the adaptive control law (59) into (41), we obtain S = [a− â(t)]e1 − [b− b̂(t)]e2 +[c− ĉ(t)](y1y2 − x1x2)

−[p− p̂(t)](y2
1 − x2

1 + y2
2 − x2

2)− kz3
(76)

Using the definitions (58), we can simplify (76) as

S = eae1 − ebe2 + ec(y1y2 − x1x2)− ep(y2
1 − x2

1 + y2
2 − x2

2)− kz3 (77)

Substituting the value of S from (77) into (73), we obtain{
V̇ = −z1 − z2 − (1+ k)z2

3 + ea[e1z3 − ˙̂a]+ eb[−e2z3 − ˙̂b]

+ec[(y1y2 − x1x2)z3 − ˙̂c]+ ep[−(y2
1 − x2

1 + y2
2 − x2

2)z3 − ˙̂p]
(78)

Substituting the update law (61) into (78), we get

V̇ =−z2
1 − z2

2 − (1+ k)z2
3, (79)

which is a negative semi-definite function on ℜ7.
From (79), it follows that the vector zzz(t) = (z1(t),z2(t),z3(t)) and the parameter

estimation error (ea(t),eb(t),ec(t),ep(t)) are globally bounded, i.e.[
z1(t) z2(t) z3(t) ea(t) eb(t) ec(t) ep(t)

]
∈ L∞ (80)

Also, it follows from (79) that

V̇ ¬−z2
1 − z2

2 − z2
3 =−∥z∥2 (81)

That is,
∥z∥2 ¬−V̇ (82)

Integrating the inequality (82) from 0 to t, we get

t∫
0

|zzz(τ)|2 dτ¬V (0)−V (t) (83)

From (83), it follows that zzz(t) ∈ L2.
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From Eq. (56), it can be deduced that żzz(t) ∈ L∞.
Thus, using Barbalat’s lemma, we conclude that zzz(t)→ 000 exponentially as t → ∞ for

all initial conditions zzz(0) ∈ ℜ3.
Hence, it is immediate that eee(t)→ 000 exponentially as t → ∞ for all initial conditions

eee(0) ∈ ℜ3.
This completes the proof.

For the numerical simulations, the classical fourth-order Runge-Kutta method with
step size h = 10−8 is used to solve the system of differential equations (53) and (54).

The parameter values of the novel jerk chaotic systems are taken as

a = 7.5, b = 4, c = 0.03, p = 0.9 (84)

The positive gain constant is taken as k = 10.
As initial conditions of the master chaotic system (53), we take

x1(0) = 5.2, x2(0) = 6.7, x3(0) =−8.1 (85)

As initial conditions of the slave chaotic system (54), we take

y1(0) =−3.7, y2(0) = 12.4, y3(0) = 7.5 (86)

Also, as initial conditions of the parameter estimates, we take

â(0) = 8.2, b̂(0) = 10.1, ĉ(0) = 5.6, p̂(0) = 2.3 (87)

In Figs. 6-8, the complete synchronization of the identical 3-D jerk chaotic systems
(53) and (54) is shown, when the adaptive control law and the parameter update law are
impelemented.

Also, in Fig. 9, the time-history of the synchronization errors e1(t),e2(t),e3(t), is
shown.

6. Conclusions

In this paper, we announced an eight-term novel 3-D jerk chaotic system with
three quadratic nonlinearities. The phase portraits of the novel jerk chaotic system
were displayed and the mathematical properties were discussed. We showed that the
novel jerk chaotic system has two equilibrium points, which are saddle-foci and unsta-
ble. The Lyapunov exponents of the novel jerk chaotic system have been obtained as
L1 = 0.20572,L2 = 0 and L3 = −1.20824. Since the sum of the Lyapunov exponents
of the jerk chaotic system is negative, we conclude that the chaotic system is dissipa-
tive. The Kaplan-Yorke dimension of the novel jerk chaotic system has been derived as
DKY = 2.17026.
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Next, an adaptive controller was designed via backstepping control method to glob-
ally stabilize the novel jerk chaotic system with unknown parameters. Moreover, an
adaptive controller was also designed via backstepping control method to achieve global
chaos synchronization of the identical jerk chaotic systems with unknown parameters.
The backstepping control method is a recursive procedure that links the choice of a Lya-
punov function with the design of a controller and guarantees global asymptotic stability
of strict feedback systems. MATLAB simulations were depicted to illustrate the phase
portraits of the novel jerk chaotic system and also the adaptive backstepping control
results.
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