PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Adsorption of lead ion on the hydrated rutile (110) surface: a DFT calculation study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The adsorption behavior of lead species on the hydrated rutile surface was investigated with inductively coupled plasma mass spectrometry (ICP-MS) measurements and density functional theory (DFT) calculations. ICP-MS experiments suggested that lead species can be readily absorbed by the rutile powder in water at pH 6.5. From the ICP-MS results and the species distribution of Pb2+, it was concluded that Pb2+ was the major lead species adsorbing at the rutile/water interface at the pH of 6.5. DFT calculation results indicated that Pb2+ could adsorb at four different sites on the surface. At each site, water molecules or OH groups were involved in the reaction with Pb2+. The water molecules/OH groups on the rutile surface play an important role during the adsorption of Pb2+ on the hydrated rutile surface.
Rocznik
Strony
951--959
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wz.
Twórcy
autor
  • Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, PR China
autor
  • Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, PR
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization,Kunming 650093
autor
  • Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, PR
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming 650093
autor
  • Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, PR
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming 650093
Bibliografia
  • AGOSTA, L.,BRANDT, E. G., LYUBARTSEV, A. P., 2017. Diffusion and reaction pathways of water near fully hydrated TiO2 surfaces from ab initio molecular dynamics. Journal of Chemical Physics 147, 37.
  • BRINKLEY, D., DIETRICH, M., ENGEL, T., FARRALL, P., GANTNER, G, SCHAFE, A., SZUCHMACHER, A, 1998. A modulated molecular beam study of the extent of H2O dissociation on TiO2 (110). Surface Science 395, 292-306.
  • BULATOVIC, S., WYSLOUZIL, D.M., 1999. Process development for treatment of complex perovskite, ilmenite and rutile ores. Minerals Engineering 12, 1407-1417.
  • CHACHULA, F., LIU, Q., 2003. Upgrading a rutile concentrate produced from Athabasca oil sands tailings. Fuel 82, 929-942.
  • CHEN, P., ZHAI, J., SUN, W., HU, Y., YIN, Z., 2017. The activation mechanism of lead ions in the flotation of ilmenite using sodium oleate as a collector. Minerals Engineering 111, 100-107.
  • DIEBOLD, U., 2003. The surface science of titanium dioxide. Surface Science Reports 48, 53-229.
  • FAN, X., ROWSON, N. A., 2000. The effect of Pb(NO3)2 on ilmenite flotation. Minerals Engineering 13, 205-215.
  • FENG, Q., ZHAO, W., WEN, S., CAO, Q., 2017. Activation mechanism of lead ions in cassiterite flotation with salicylhydroxamic acid as collector. Separation and Purification Technology 178, 193-199.
  • FRANCIS, G., PAYNE, M., 1990. Finite basis set corrections to total energy pseudopotential calculations. Journal of Physics: Condensed Matter 2, 4395.
  • GAZQUEZ, M. J., BOLIVAR, J. P., CARCIATENORIO, R., VACA, F., 2014. A Review of the Production Cycle of Titanium Dioxide Pigment. Materials Sciences & Applications 05, 441-458.
  • KONSTANTINOU, I. K., ALBANIS,T. A., 2004. TiO-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review. Applied Catalysis B Environmental 49, 1-14.
  • LI, H., MU, S., WENG, X., ZHAO, Y., SONG, S., 2016. Rutile flotation with Pb2+ions as activator: Adsorption of Pb2+at rutile/water interface.Colloids and Surfaces A: Physicochemical and Engineering Aspects 506, 431-437.
  • LIU, B., WANG, X., DU, H., LIU, J., ZHENG, S., ZHANG, Y., MILLER, J. D., 2016. The surface features of lead activation in amyl xanthate flotation of quartz. International Journal of Mineral Processing 151, 33-39.
  • LIU, Q., PENG, Y., 1999. The development of a composite collector for the flotation of rutile. Minerals Engineering 12, 1419-1430.
  • LU, X., ZHANG, H.P., LENG, Y., FANG, L., QU, S., FENG, B., WENG, J., HUANG, N., 2010. The effects of hydroxyl groups on Ca adsorption on rutile surfaces: a first-principles study. J Mater Sci Mater Med 21, 1-10.
  • LU, X., ZHAO, Z., LENG, Y., 2007. Biomimetic calcium phosphate coatings on nitric-acid-treated titanium surfaces. Materials Science & Engineering C 27, 700-708.
  • PERDEW, J. P., BURKE, K., ERNZERHOF, M., 1996. Generalized gradient approximation made simple. Physical review letters 77, 3865.
  • PERDEW, J. P., ZUNGER, A., 1981. Self-interaction correction to density-functional approximations for many-electron systems. Physical Review B 23, 5048.
  • PERRON, H., DOMAIN, C., ROQUES, J., DROT, R., SIMONI, E., CATELETTE, H., 2007a. Optimisation of accurate rutile TiO2(110), (100), (101) and (001) surface models from periodic DFT calculations. Theoretical Chemistry Accounts Theory Computation & Modeling 117, 565-574.
  • PERRON, H., VANDENBORRE, J., BOMAIN., DROT, R, ROQUES, J., SIMONI, E., EHRHARDT, J. J., CATALETTE, H., 2007b. Combined investigation of water sorption on TiO2rutile (110) single crystal face: XPS vs. periodic DFT. Surface Science 601, 518-527.
  • PREDOTA, M., BANDURA, A. V., CUMMINGS, P. T., KUBICKI, J. D., WESOLOWSKI, D. J., CHIALVO, A. A.., MACHESKY, M. L.,2004. Electric Double Layer at the Rutile (110) Surface. 1. Structure of Surfaces and Interfacial Water from Molecular Dynamics by Use of ab Initio Potentials.The Journal of Physical Chemistry B 108, 12049-12060.
  • REN, L.L, QIU, H., ZHANG, M., FENG, K., LIU, P., GUO, J., FENG, J., 2017. Behavior of Lead Ions in Cassiterite Flotation Using Octanohydroxamic Acid. Industrial & Engineering Chemistry Research 56, 8723-8728.
  • SEGALL, M., LINDAN, P. J., PROBERT, M. A., PICHARD, C., HASNI, P., CLARK, S, PAYNE, M., 2002. First-principles simulation: ideas, illustrations and the CASTEP code. Journal of Physics: Condensed Matter 14, 2717.
  • SVETINA, M., CIACCHI, L,C., SBAIZERO, O., MERIANI, S., VITA, A.D., 2001. Deposition of calcium ions on rutile (110): a first-principles investigation. Acta Materialia 49, 2169-2177.
  • TERZI, M., KURSUN, I.,2015. Investigation of recovery possibilities of rutile minerals from the feldspar tailings with gravity separation methods. Russian Journal of Non-Ferrous Metals 56, 235-245.
  • TIAN, M., GAO, Z., SUN, W., HAN, H, SUN, L., HU, Y., 2018. Activation role of lead ions in benzohydroxamic acid flotation of oxide minerals: New perspective and new practice. Journal of Colloid & Interface Science.
  • WANG, J., CHENG, H. W., ZHAO, H.B., QIN, W.Q., QIU, G. Z., 2014. Flotation behavior and mechanism of rutile in presence of sodium oleate. Chinese Journal of Nonferrous Metals 24, 820-825.
  • WATANABE, T., NAKAJINA, A., WANG, R., MINABE, M., KOIZUMI, S., FUJISHIMA, A., HASHIMOTO, K., 1999. Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass.Thin Solid Films 351, 260-263.
  • WENG, C. H., 2004. Modeling Pb(II) adsorption onto sandy loam soil. Journal of Colloid & Interface Science 272, 262-270.
  • XU, L., TIAN, J., WU, H., LU, Z., YANG, Y., SUN, W., HU, Y., 2017. Effect of Pb2+ions on ilmenite flotation and adsorption of benzohydroxamic acid as a collector. Applied Surface Science 425.
  • ZHANG, W., YANG, J., LUO, Y., MONTI, S., CARRAVETTA, VL, 2008. Quantum molecular dynamics study of water on TiO2(110) surface. Journal of Chemical Physics 129, 064703.
  • ZHAO, G., WANG, S., ZHONG, H., 2015. Study on the activation of scheelite and wolframite by lead nitrate. Minerals 5, 247-258.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8ec68514-013f-45a4-8ddc-ce07fd6ca15d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.