Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Composition effect on electro-optic (EO) properties of a LiNbO₃ (LN) single-crystal has been investigated in a Li₂O-content range of 47.0-49.95 mol%. Some non-congruent LN crystals with different Li₂O-contents were prepared by performing Li-deficient or Li-rich vapour transport equilibration treatments on as-grown congruent LN crystals. Unclamped EO coefficients γ₁₃ and γ₃₃ of these samples were measured by a Mach-Zehnder interferometric method. The measurements show that in the Li-deficient regime both γ₁₃ and γ₃₃ increase by ∼8% as Li₂O-content decreases from the congruent 48.6 mol% to the 47.0 mol% in the Li-deficient regime. The feature is desired for the EO application of the Li-deficient crystal. In the near-stoichiometric regime, both γ ₁₃ and γ₃₃ reveal a non-monotonic dependence. As the Li₂O-content increases from the 48.6 mol%, the EO coefficient decreases. Around Li₂O-content 49.5 mol%, a minimum is reached. After that, the EO coefficient recovers slowly. At the stoichiometric composition, it recovers to a value close to that at the congruent point. Comparison shows that different crystal growth methods give rise to different defect structure features and hence different composition effects.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
89--92
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
autor
- Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronic Information Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
autor
- Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronic Information Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
autor
- Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronic Information Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
autor
- Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronic Information Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
- Department of Electronic Engineering and State Key Laboratory of Millimeter Waves, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, People’s Republic of China
autor
- Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronic Information Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
autor
- Department of Electronic Engineering and State Key Laboratory of Millimeter Waves, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, People’s Republic of China
autor
- Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronic Information Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
- Department of Electronic Engineering and State Key Laboratory of Millimeter Waves, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, People’s Republic of China
Bibliografia
- [1] N. A. Sanford, Introduction to the feature issue on recent in lithium niobate optical technology, IEEE J. Quantum Electron. 33 (10) (1997) 1626.
- [2] W. Jin, K. S. Chiang, Q. Liu, Analysis of lithium niobate electrooptic long period waveguide gratings, J. Lightwave Technol. 28 (10) (2010) 1477-1484.
- [3] D. L. Zhang, J. Kang, W. H. Wong, D. Y. Yu, E. Y. B. Pun, Electro-optically tunable super-broadband filter based on long period grating in Ti:LiNbO3 waveguide, Opt. Lett. 40 (20) (2015) 4715-4718.
- [4] I. Baumann, S. Bosso, R. Brinkmann, R. Corsini, M. Dinand, A. Greiner, K. Schäfer, J. Söchtig, W. Sohler, H. Suche, R. Wessel, Er-doped integrated optical devices in LiNbO3, IEEE J. Sel. Top. Quantum Electron. 2 (2) (1996) 355-366.
- [5] Ch. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiberg, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, D. Sciancalepore, Advanced Ti:Er:LiNbO3 waveguide lasers, IEEE J. Sel. Top. Quantum Electron. 6 (1) (2000) 101–113.
- [6] R. Wessel, R. Ricken, K. Rochhausen, H. Suche, W. Sohler, Supermode stabilized coupled-cavity 5- and 10-GHz mode-locked Ti:Er:LiNbO3 waveguide lasers, IEEE J. Quantum Electron. 36 (3) (2000) 394-399.
- [7] H. Suche, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, W. Sohler, S. Balsamo, I. Montrosset, K. K. Wong, Efficient Q-switched Ti:Er:LiNbO3 waveguide laser, Electron. Lett. 34 (12) (1998) 1228-1230.
- [8] D. L. Zhang, B. Chen, P. R. Hua, D. Y. Yu, E. Y. B. Pun, Demonstration of Er3+ diffusivity and solubility increases in off-congruent, Li-deficient LiNbO3 crystal, J. Mater. Res. 26 (12) (2011) 1524-1531.
- [9] D. L. Zhang, B. Chen, E. Y. B. Pun, Locally Er-doped high-solubility LiNbO3 crystal prepared by Li-poor vapor transport equilibration and Er co-diffusion, J. Am. Ceram. Soc. 93 (11) (2010) 3837-3841.
- [10] K. Chah, M. D. Fontana, M. Aillerie, P. Bourson, G. Malovichko, Electro-optic properties in undoped and Cr-doped LiNbO3 crystals, Appl. Phys. B: Lasers Opt. 67 (1) (1998) 65-71.
- [11] M. Abarkan, M. Aillerie, J. P. Salvestrini, M. D. Fontana, E. P. Kokanyan, Electro-optic and dielectric properties of hafnium-doped congruent lithium niobate crystals, Appl. Phys. B: Lasers Opt. 92 (4) (2008) 603-608.
- [12] B. H. Kang, B. K. Rhee, G. T. Joo, Variation of electro-optic coefficients in MgO-doped LiNbO3 single crystals, Mater. Lett. 60 (17-18) (2006) 2306-2308.
- [13] W. Y. Du, Z. B. Zhang, S. Ren, W. H. Wong, D. Y. Yu, E. Y. B. Pun, D. L. Zhang, Note: Electro-optic coefficients of Li-deficient MgO:LiNbO3 single crystal: composition effect, Rev. Sci. Instrum. 87 (2016) 096105.
- [14] R. J. Holmes, Y. S. Kim, C. D. Brandle, D. M. Smyth, Evaluation of crystals of LiNbO3 doped with MgO or TiO2 for electrooptic devices, Ferroelectrics 51 (1) (1983) 41-45.
- [15] W. Y. Du, Z. B. Zhang, J.Q. Xu, W. H. Wong, D. Y. Yu, E. Y. B. Pun, D. L. Zhang, Electro-optic property of Ti4+-doped LiNbO3 single crystals, Opt. Mater. Exp. 6 (8) (2016) 2593-2599.
- [16] M. Abarkan, M. Aillerie, N. Kokanyan, C. Teyssandier, E. Kokanyan, Electro-optic and dielectric properties of zirconium-doped congruent lithium-niobate crystals, Opt. Mater. Exp. 4 (1) (2014) 1179-1189.
- [17] K. Chah, M. Aillerie, M. D. Fontana, G. Malovichko, Electro-optic properties in Fe-doped LiNbO3 crystals function of composition, Opt. Commun. 176 (1-3) (2000) 261-265.
- [18] F. Abdi, M. Aillerie, M. Fontana, P. Bourson, T. Volk, B. Maximov, S. Sulyanov, N. Rubinina, M. Wöhlecke, Influence of Zn doping on electrooptical properties and structure parameters of lithium niobate crystals, Appl. Phys. B: Lasers Opt. 68 (5) (1999) 795-799.
- [19] M. Minakata, K. Kumagai, S. Kawakami, Lattice constant changes and electrooptical effects in proton exchanged LiNbO3 optical waveguides, Appl. Phys. Lett. 49 (16) (1986) 992-994.
- [20] I. Savatinova, S. Tonchev, R. Todorov, M. N. Armenise, V. M. N. Passaro, C. C. Ziling, Electro-optic effect in proton exchanged LiNbO3 and LiTaO3 waveguides, J. Lightwave Technol. 14 (3) (1996) 403-409.
- [21] A. Méndez, G. De La Paliza, A. García-Caba˜nes, J.M. Cabrera, Comparison of the electro-optic coefficient r33 in well-defined phases of proton exchanged LiNbO3 waveguides, Appl. Phys. B: Lasers Opt. 73 (5-6) (2001) 485-488.
- [22] A. Petris, S. Heidari Bateni, V. I. Vlad, M. Alonzo, F. Pettazzi, N. Argiolas, M. Bazzan, C. Sada, D. Wolfersberger, E. Fazio, The r33 electro-optic coefficient of Er:LiNbO3, J. Opt. 12 (2010) 015205.
- [23] W. Y. Du, P. Zhang, Z. B. Zhang, S. Ren, W. H. Wong, D. Y. Yu, E. Y. B. Pun, D. L. Zhang, Electro-optic coefficients r13 and r33 of singly Er3+-doped and In3+/Er3+-codoped LiNbO3 crystals, J. Phys. Chem. Solids 100 (2017) 101-106.
- [24] T. Fujiwara, M. Takahashi, M. Ohama, A. J. Ikushima, Y. Furukawa, K. Kitamura, Comparison of electro-optic effect between stoichiometric and congruent LiNbO3, Electron. Lett. 35 (6) (1999) 499-501.
- [25] A. Méndez, A. García Cabañes, E. Diéguez, J. M. Cabrera, Wavelength dependence of electro-optic coefficients in congruent and quasi-stoichiometric LiNbO3, Electron. Lett. 35 (6) (1999) 498-499.
- [26] M. Abarkan, J. P. Salvestrini, M. D. Fontana, M. Aillerie, Frequency and wavelength dependences of electro-optic coefficients in inorganic crystals, Appl. Phys. B: Lasers Opt. 76 (7) (2003) 765-769.
- [27] F. Abdi, M. Aillerie, P. Bourson, M. D. Fontana, K. Polgar, Electro-optic properties in pure LiNbO3 crystals from the congruent to the stoichiometric composition, J. Appl. Phys. 84 (4) (1998) 2251-2254.
- [28] U. Schlarb, K. Betzler, Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: a generalized fit, Phys. Rev. B 48 (21) (1993) 15613-15620.
- [29] A. S. Andrushchak, B. G. Mytsyk, N. M. Demyanyshyn, M. V. Kaidan, O. V. Yurkevych, I. M. Solskii, A. V. Kityk, W. Schranz, Spatial anisotropy of linear electro-optic effect in crystal materials: I. Experimental determination of electro-optic tensor in LiNbO3 by means of interferometric technique, Opt. Laser Eng. 47 (1) (2009) 31-38.
- [30] A. S. Andrushchak, B. G. Mytsyk, H. P. Laba, O. V. Yurkevych, I. M. Solskii, A. V. Kityk, B. Sahraoui, Complete sets of elastic constants and photoelastic coefficients of pure and MgO-doped lithium niobate crystals at room temperature, J. Appl. Phys. 106 (7) (2009) 073510.
- [31] B. G. Mytsyk, A. S. Andrushchak, N. M. Demyanyshyn, Y. P. Kost, A. V. Kityk, P. Mandracci, W. Schranz, Piezo-optic coefficients of MgO-doped LiNbO3 crystals, Appl. Opt. 48 (10) (2009) 1904-1911.
- [32] A. S. Andrushchak, Y. V. Bobitski, M. V. Kaidan, B. G. Mytsyk, A. V. Kityk, W. Schranz, Two-fold interferometric measurements of piezo-optic constants: application to beta-BaB2O4 crystals, Opt. Laser Technol. 37 (4) (2005) 319-328.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8ec2487e-47b6-4632-9150-61bb18c35e21
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.