PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electro-optic coefficients of a non-congruent lithium niobate fabricated by vapour transport equilibration : Composition effect

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Composition effect on electro-optic (EO) properties of a LiNbO₃ (LN) single-crystal has been investigated in a Li₂O-content range of 47.0-49.95 mol%. Some non-congruent LN crystals with different Li₂O-contents were prepared by performing Li-deficient or Li-rich vapour transport equilibration treatments on as-grown congruent LN crystals. Unclamped EO coefficients γ₁₃ and γ₃₃ of these samples were measured by a Mach-Zehnder interferometric method. The measurements show that in the Li-deficient regime both γ₁₃ and γ₃₃ increase by ∼8% as Li₂O-content decreases from the congruent 48.6 mol% to the 47.0 mol% in the Li-deficient regime. The feature is desired for the EO application of the Li-deficient crystal. In the near-stoichiometric regime, both γ ₁₃ and γ₃₃ reveal a non-monotonic dependence. As the Li₂O-content increases from the 48.6 mol%, the EO coefficient decreases. Around Li₂O-content 49.5 mol%, a minimum is reached. After that, the EO coefficient recovers slowly. At the stoichiometric composition, it recovers to a value close to that at the congruent point. Comparison shows that different crystal growth methods give rise to different defect structure features and hence different composition effects.
Rocznik
Strony
89--92
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
  • Key Laboratory of Optoelectronic Information Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
autor
  • Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
  • Key Laboratory of Optoelectronic Information Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
autor
  • Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
  • Key Laboratory of Optoelectronic Information Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
autor
  • Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
  • Key Laboratory of Optoelectronic Information Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
  • Department of Electronic Engineering and State Key Laboratory of Millimeter Waves, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, People’s Republic of China
autor
  • Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
  • Key Laboratory of Optoelectronic Information Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
autor
  • Department of Electronic Engineering and State Key Laboratory of Millimeter Waves, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, People’s Republic of China
autor
  • Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
  • Key Laboratory of Optoelectronic Information Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
  • Department of Electronic Engineering and State Key Laboratory of Millimeter Waves, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, People’s Republic of China
Bibliografia
  • [1] N. A. Sanford, Introduction to the feature issue on recent in lithium niobate optical technology, IEEE J. Quantum Electron. 33 (10) (1997) 1626.
  • [2] W. Jin, K. S. Chiang, Q. Liu, Analysis of lithium niobate electrooptic long period waveguide gratings, J. Lightwave Technol. 28 (10) (2010) 1477-1484.
  • [3] D. L. Zhang, J. Kang, W. H. Wong, D. Y. Yu, E. Y. B. Pun, Electro-optically tunable super-broadband filter based on long period grating in Ti:LiNbO3 waveguide, Opt. Lett. 40 (20) (2015) 4715-4718.
  • [4] I. Baumann, S. Bosso, R. Brinkmann, R. Corsini, M. Dinand, A. Greiner, K. Schäfer, J. Söchtig, W. Sohler, H. Suche, R. Wessel, Er-doped integrated optical devices in LiNbO3, IEEE J. Sel. Top. Quantum Electron. 2 (2) (1996) 355-366.
  • [5] Ch. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiberg, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, D. Sciancalepore, Advanced Ti:Er:LiNbO3 waveguide lasers, IEEE J. Sel. Top. Quantum Electron. 6 (1) (2000) 101–113.
  • [6] R. Wessel, R. Ricken, K. Rochhausen, H. Suche, W. Sohler, Supermode stabilized coupled-cavity 5- and 10-GHz mode-locked Ti:Er:LiNbO3 waveguide lasers, IEEE J. Quantum Electron. 36 (3) (2000) 394-399.
  • [7] H. Suche, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, W. Sohler, S. Balsamo, I. Montrosset, K. K. Wong, Efficient Q-switched Ti:Er:LiNbO3 waveguide laser, Electron. Lett. 34 (12) (1998) 1228-1230.
  • [8] D. L. Zhang, B. Chen, P. R. Hua, D. Y. Yu, E. Y. B. Pun, Demonstration of Er3+ diffusivity and solubility increases in off-congruent, Li-deficient LiNbO3 crystal, J. Mater. Res. 26 (12) (2011) 1524-1531.
  • [9] D. L. Zhang, B. Chen, E. Y. B. Pun, Locally Er-doped high-solubility LiNbO3 crystal prepared by Li-poor vapor transport equilibration and Er co-diffusion, J. Am. Ceram. Soc. 93 (11) (2010) 3837-3841.
  • [10] K. Chah, M. D. Fontana, M. Aillerie, P. Bourson, G. Malovichko, Electro-optic properties in undoped and Cr-doped LiNbO3 crystals, Appl. Phys. B: Lasers Opt. 67 (1) (1998) 65-71.
  • [11] M. Abarkan, M. Aillerie, J. P. Salvestrini, M. D. Fontana, E. P. Kokanyan, Electro-optic and dielectric properties of hafnium-doped congruent lithium niobate crystals, Appl. Phys. B: Lasers Opt. 92 (4) (2008) 603-608.
  • [12] B. H. Kang, B. K. Rhee, G. T. Joo, Variation of electro-optic coefficients in MgO-doped LiNbO3 single crystals, Mater. Lett. 60 (17-18) (2006) 2306-2308.
  • [13] W. Y. Du, Z. B. Zhang, S. Ren, W. H. Wong, D. Y. Yu, E. Y. B. Pun, D. L. Zhang, Note: Electro-optic coefficients of Li-deficient MgO:LiNbO3 single crystal: composition effect, Rev. Sci. Instrum. 87 (2016) 096105.
  • [14] R. J. Holmes, Y. S. Kim, C. D. Brandle, D. M. Smyth, Evaluation of crystals of LiNbO3 doped with MgO or TiO2 for electrooptic devices, Ferroelectrics 51 (1) (1983) 41-45.
  • [15] W. Y. Du, Z. B. Zhang, J.Q. Xu, W. H. Wong, D. Y. Yu, E. Y. B. Pun, D. L. Zhang, Electro-optic property of Ti4+-doped LiNbO3 single crystals, Opt. Mater. Exp. 6 (8) (2016) 2593-2599.
  • [16] M. Abarkan, M. Aillerie, N. Kokanyan, C. Teyssandier, E. Kokanyan, Electro-optic and dielectric properties of zirconium-doped congruent lithium-niobate crystals, Opt. Mater. Exp. 4 (1) (2014) 1179-1189.
  • [17] K. Chah, M. Aillerie, M. D. Fontana, G. Malovichko, Electro-optic properties in Fe-doped LiNbO3 crystals function of composition, Opt. Commun. 176 (1-3) (2000) 261-265.
  • [18] F. Abdi, M. Aillerie, M. Fontana, P. Bourson, T. Volk, B. Maximov, S. Sulyanov, N. Rubinina, M. Wöhlecke, Influence of Zn doping on electrooptical properties and structure parameters of lithium niobate crystals, Appl. Phys. B: Lasers Opt. 68 (5) (1999) 795-799.
  • [19] M. Minakata, K. Kumagai, S. Kawakami, Lattice constant changes and electrooptical effects in proton exchanged LiNbO3 optical waveguides, Appl. Phys. Lett. 49 (16) (1986) 992-994.
  • [20] I. Savatinova, S. Tonchev, R. Todorov, M. N. Armenise, V. M. N. Passaro, C. C. Ziling, Electro-optic effect in proton exchanged LiNbO3 and LiTaO3 waveguides, J. Lightwave Technol. 14 (3) (1996) 403-409.
  • [21] A. Méndez, G. De La Paliza, A. García-Caba˜nes, J.M. Cabrera, Comparison of the electro-optic coefficient r33 in well-defined phases of proton exchanged LiNbO3 waveguides, Appl. Phys. B: Lasers Opt. 73 (5-6) (2001) 485-488.
  • [22] A. Petris, S. Heidari Bateni, V. I. Vlad, M. Alonzo, F. Pettazzi, N. Argiolas, M. Bazzan, C. Sada, D. Wolfersberger, E. Fazio, The r33 electro-optic coefficient of Er:LiNbO3, J. Opt. 12 (2010) 015205.
  • [23] W. Y. Du, P. Zhang, Z. B. Zhang, S. Ren, W. H. Wong, D. Y. Yu, E. Y. B. Pun, D. L. Zhang, Electro-optic coefficients r13 and r33 of singly Er3+-doped and In3+/Er3+-codoped LiNbO3 crystals, J. Phys. Chem. Solids 100 (2017) 101-106.
  • [24] T. Fujiwara, M. Takahashi, M. Ohama, A. J. Ikushima, Y. Furukawa, K. Kitamura, Comparison of electro-optic effect between stoichiometric and congruent LiNbO3, Electron. Lett. 35 (6) (1999) 499-501.
  • [25] A. Méndez, A. García Cabañes, E. Diéguez, J. M. Cabrera, Wavelength dependence of electro-optic coefficients in congruent and quasi-stoichiometric LiNbO3, Electron. Lett. 35 (6) (1999) 498-499.
  • [26] M. Abarkan, J. P. Salvestrini, M. D. Fontana, M. Aillerie, Frequency and wavelength dependences of electro-optic coefficients in inorganic crystals, Appl. Phys. B: Lasers Opt. 76 (7) (2003) 765-769.
  • [27] F. Abdi, M. Aillerie, P. Bourson, M. D. Fontana, K. Polgar, Electro-optic properties in pure LiNbO3 crystals from the congruent to the stoichiometric composition, J. Appl. Phys. 84 (4) (1998) 2251-2254.
  • [28] U. Schlarb, K. Betzler, Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: a generalized fit, Phys. Rev. B 48 (21) (1993) 15613-15620.
  • [29] A. S. Andrushchak, B. G. Mytsyk, N. M. Demyanyshyn, M. V. Kaidan, O. V. Yurkevych, I. M. Solskii, A. V. Kityk, W. Schranz, Spatial anisotropy of linear electro-optic effect in crystal materials: I. Experimental determination of electro-optic tensor in LiNbO3 by means of interferometric technique, Opt. Laser Eng. 47 (1) (2009) 31-38.
  • [30] A. S. Andrushchak, B. G. Mytsyk, H. P. Laba, O. V. Yurkevych, I. M. Solskii, A. V. Kityk, B. Sahraoui, Complete sets of elastic constants and photoelastic coefficients of pure and MgO-doped lithium niobate crystals at room temperature, J. Appl. Phys. 106 (7) (2009) 073510.
  • [31] B. G. Mytsyk, A. S. Andrushchak, N. M. Demyanyshyn, Y. P. Kost, A. V. Kityk, P. Mandracci, W. Schranz, Piezo-optic coefficients of MgO-doped LiNbO3 crystals, Appl. Opt. 48 (10) (2009) 1904-1911.
  • [32] A. S. Andrushchak, Y. V. Bobitski, M. V. Kaidan, B. G. Mytsyk, A. V. Kityk, W. Schranz, Two-fold interferometric measurements of piezo-optic constants: application to beta-BaB2O4 crystals, Opt. Laser Technol. 37 (4) (2005) 319-328.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8ec2487e-47b6-4632-9150-61bb18c35e21
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.