PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of bleed flow precooling influence on the efficiency of the E-MATIANT cycle

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study aims to present a method for precooling bleed flow by water injection in the E-MATIANT cycle and to estimate its impact on the overall efficiency. The design parameters of the cycle are set up on the basis of the component technologies of today’s state-of-the-art gas turbines with a turbine inlet temperature between 1100 and 1700◦C. Several schemes of the E-MATIANT cycle are considered: with one, two and three combustion chambers. The optimal pressure ratio ranges for the considered turbine inlet temperatures are identified and a comparison with existing evaluations is made. For the optimal initial parameters, cycle net efficiency varies from 42.0 to 49.8%. A significant influence of turbine stage cooling model on optimal thermodynamic parameters and cycle efficiency is established. The maximum cycle efficiency is 44.0% considering cooling losses. The performance penalty due to the oxygen production and carbon dioxide capture is 20-22%.
Rocznik
Strony
593--602
Opis fizyczny
Bibliogr. 18 poz., rys., wykr.
Twórcy
autor
  • National Research University, Moscow Power Engineering Institute, Moscow, Russian Fedaration
autor
  • National Research University, Moscow Power Engineering Institute, Moscow, Russian Fedaration
autor
  • National Research University, Moscow Power Engineering Institute, Moscow, Russian Fedaration
autor
  • National Research University, Moscow Power Engineering Institute, Moscow, Russian Fedaration
autor
  • National Research University, Moscow Power Engineering Institute, Moscow, Russian Fedaration
Bibliografia
  • [1] Keeling, R. F., Piper, S. C., Bollenbacher, A. F. and Walker, J. S.: Atmospheric carbon dioxide record from Mauna Loa, Carbon Dioxide Research Group, La Jolla, 2008.
  • [2] Global Environment Outlook. 2012, United Nations Environment Programme, Progress Press Ltd, Malta, 2012.
  • [3] Climate change 2014: Mitigation of climate change, Intergovernmental Panel on Climate Change, Cambridge University Press, New York, 2014.
  • [4] Marchal, V., Dellink, R., Van Vuuren, D., Clapp, C., Chateau, J., Magné, B. and Van Vliet J.: OECD environmental outlook to 2050, Organization for Eco- nomic Co-operation and Development, 2011
  • [5] Feng, K., Davis, S. J., Sun, L. and Hubacek, K.: Drivers of the US CO2 emissions 1997-2013, Nat. Commun., 6, 7714, 2015
  • [6] Buhre, B. J., Elliott, L. K., Sheng, C. D, Gupta, R. P. and Wall, T. F.: Oxyfuel combustion technology for coal-fired power generation, Prog. Energ. Combust., 31, 4, 283-307, 2005.
  • [7] Kindra, V. O., Rogalev, A. N. and Rogalev, N. D.: Oxy-fuel combustion technologies for power generation with zero-emissions, Proc. Ecology in Power Production, MPEI, Moscow, Russia, 2017.
  • [8] Allam, R. J., Fetvedt, J. E., Forrest, B. A. and Freed, D. A.: The oxy-fuel, supercritical CO2 Allam Cycle: New cycle developments to produce even lower-cost electricity from fossil fuels without atmospheric emissions, Proc. Turbine Technical Conf. and Exp., ASME, Düsseldorf, Germany, 2014.
  • [9] Mathieu, P.and Nihart, R.: Zero-emission MATIANT cycle, J. Eng. Gas. Turb. Power, 121, 1, 116-120, 1990.
  • [10] Yang, H. J., Kang, D. W., Ahn, J. H. and Kim, T. S.: Evaluation of design performance of the semi-closed oxy-fuel combustion combined cycle, J. Eng. Gas. Turb. Power, 134, 11, 111702, 2012.
  • [11] Thorbergsson, E. and Grönstedt, T.: A thermodynamic analysis of two competing mid-sized oxyfuel combustion combined cycles, J. Energy, 2438431, 2016.
  • [12] Dahlquist, A., Genrup, M., Sjoedin, M. and Jonshagen, K.: Optimization of an oxyfuel combined cycle regarding performance and complexity level, Proc. Turbine Technical Conf. and Exp., ASME, San Antonio, USA, 2013.
  • [13] Scaccabarozzi, R., Gatti, M. and Martelli, E.: Thermodynamic analysis and numerical optimization of the NET Power oxy-combustion cycle, Appl. Energ., 178, 505-526, 2016.
  • [14] Zhao, Y., Zhao, L., Wang, B., Zhang, S., Chi, J. and Xiao, Y.: Thermodynamic analysis of a novel dual expansion coal-fueled direct-fired supercritical carbon dioxide power cycle, Appl. Energ., 217, 480-495, 2018.
  • [15] Mathieu, P. and Nihart, R.: Sensitivity analysis of the MATIANT cycle, Energ. Convers. Manage., 40, 15-16, 1687-1700, 1999.
  • [16] Mathieu, P.: Zero emission technologies: An option for climate change mitigation, Int. J. Green Energy, 2, 2, 193-199, 2005.
  • [17] Wilcock, R. C., Young, J. B. and Horlock, J. H.: The effect of turbine blade cooling on the cycle efficiency of gas turbine power cycles, J. Eng. Gas. Turb. Power, 127, 1, 109-120, 2005.
  • [18] Young, J. B. and Wilcock, R. C.: Modelling the air-cooled gas turbine: Part 1 - general thermodynamics, Proc. Power for Land, Sea, and Air, ASME, Louisiana, USA, 2001.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8ec0db14-425b-44ee-870a-640e9858d16c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.