PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fatigue life prediction for acid-resistant steel plate under operating loads

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper evaluates the causes related to the fatigue damage in a conveyor slide plate, exposed to high-frequency cyclic loads. The plate was made of 1.4301 acid-resistant steel. The fractography showed that the plate failure was caused by fatigue crack. A nonlinear analysis of plate deformation was conducted using the finite element method (FEA) in LS-Dyna software. The maximum normal stresses in the plate fracture were used in further analysis. A “fatigue limit” calculated initially using a FITNET procedure was above the maximum stress calculated using FEA. It indicates that the structural features of the plate were selected correctly. The experimental test results for 1.4301 acid-resistant steel were described using a probabilistic Weibull distribution model. Reliability was determined for the obtained S-N curve at 50% and 5% failure probability allowing for the selected coefficients (cycle asymmetry, roughness, variable load) and the history of cyclic loading. Cumulative damage was determined using the Palmgren-Miner hypothesis. The estimated fatigue life was similar to the actual value determined in the operating conditions for the S-N curve at 5% failure probability. For engineering calculations, the S-N curve at max. 5% failure probability is recommended.
Rocznik
Strony
913--921
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • University of Science and Technology, Faculty of Mechanical Engineering, 7 Prof. S. Kaliskiego Street, 85-796 Bydgoszcz, Poland
  • University of Science and Technology, Faculty of Mechanical Engineering, 7 Prof. S. Kaliskiego Street, 85-796 Bydgoszcz, Poland
autor
  • Military University of Technology, Faculty of Mechanical Engineering, 2 Gen. Urbanowicza Street, 00-908 Warsaw, Poland
autor
  • University of Science and Technology, Faculty of Mechanical Engineering, 7 Prof. S. Kaliskiego Street, 85-796 Bydgoszcz, Poland
Bibliografia
  • [1] M. Kotyk, D. Boroński, and P. Maćkowiak, “The Influence of Cryogenic Conditions on the Process of AA2519 Aluminum Alloy Cracking,” Materials (Basel). 13(7) 1555 (2020).
  • [2] H.A. Richard, M. Fulland, M. Sander, and G. Kullmer, “Fracture in a rubber-sprung railway wheel,” Eng. Fail. Anal. 12(6), 986–999 (2005).
  • [3] H.A. Richard, M. Sander, B. Schramm, G. Kullmer, and M. Wirxel, “Fatigue crack growth in real structures,” Int. J. Fatigue 50, 83–88 (2013).
  • [4] C.R. Gagg and P.R. Lewis, “In-service fatigue failure of engineered products and structures – Case study review,” Eng. Fail. Anal. 16(6), 1775–1793 (2009).
  • [5] M. Kocak, S. Webster, J. Janosch, J., A. Ainsworth, and R. Koers, “FITNET Fitness-for-Service PROCEDURE – FINAL DRAFT MK7,” 2006. http://www.fracture.tu.kielce.pl/procedury_2/Section0.pdf
  • [6] Y.-L. Lee, J. Paw, B. Hathaway, R.B. Hathaway, and M.E. Barkey, Fatigue Testing and Analysis – Theory and Practice. Elsevier Butterworth–Heinemann, 2005.
  • [7] P. Strzelecki and J. Sempruch, “Verification of analytical models of the s-n curve within limited fatigue life,” J. Theor. Appl. Mech. 54(1), 63 (2016).
  • [8] M. Wachowski, L. Śnieżek, I. Szachogłuchowicz, R. Kosturek, and T. Płociński, “Microstructure and fatigue life of Cp-Ti/316L bimetallic joints obtained by means of explosive welding,” Bull. Pol. Ac.: Tech. 66(6), 925–933 (2018).
  • [9] Y. Ai et al., “Probabilistic modeling of fatigue life distribution and size effect of components with random defects,” Int. J. Fatigue 126, 165–173 (2019).
  • [10] D. Liao, S.P. Zhu, J.A.F.O. Correia, A.M.P. De Jesus, and F. Berto, “Recent advances on notch effects in metal fatigue: A review,” Fatigue Fract. Eng. Mater. Struct. 43(4), 637–659 (2020).
  • [11] S.K. Bhaumik, R. Rangaraju, M.A. Venkataswamy, T.A. Bhaskaran, and M.A. Parameswara, “Fatigue fracture of crankshaft of an aircraft engine,” Eng. Fail. Anal. 9(3), 255–263 (2002).
  • [12] H.A. Richard, M. Sander, M. Fulland, and G. Kullmer, “Development of fatigue crack growth in real structures,” Eng. Fract. Mech. 75(3–4), 331–340 (2008).
  • [13] A.A. Shaniavskiy and A.L. Toushentsov, “Mechanisms of fatigue crack initiation and propagation in cast aluminum alloy AL5 of hydropumps NP-89D in aircraft Tu-154M,” Eng. Fail. Anal. 17(3), 658–663 (2010).
  • [14] M. Fonte and M. de Freitas, “Marine main engine crankshaft failure analysis: A case study,” Eng. Fail. Anal. 16(6), 1940–1947 (2009).
  • [15] N. Iyyer, S. Sarkar, R. Merrill, and N. Phan, “Aircraft life management using crack initiation and crack growth models – P-3C Aircraft experience,” Int. J. Fatigue 29(9–11), 1584–1607 (2007).
  • [16] Y. Lu, H. Zheng, J. Zeng, T. Chen, and P. Wu, “Fatigue life reliability evaluation in a high-speed train bogie frame using accelerated life and numerical test,” Reliab. Eng. Syst. Saf. 188(March), pp. 221–232, 2019.
  • [17] T. Tomaszewski and P. Strzelecki, “Study of the size effect for non-alloy steels S235JR, S355J2+C and acid-resistant steel 1.4301,” in AIP Conference Proceedings, 201, p. 020008.
  • [18] PN-EN ISO 6892‒1:2016, “Metallic materials – Tensile testing – Part 1: Method of test at room temperature,” 2016.
  • [19] P. Baranowski and J. Malachowski, “Numerical study of selected military vehicle chassis subjected to blast loading in terms of tire strength improving,” Bull. Pol. Ac.: Tech. 63(4), 867–878 (2015).
  • [20] D. Skibicki, Ł. Pejkowski, and M. Stopel, “Finite Element Analysis of Ventilation System Fire Damper Dynamic Time-History,” Polish Marit. Res. 24(4), 116–123 (2017).
  • [21] A. Cichanski, “Mesh size dependency on notch radius for FEM analysis of notched round bars under tension,” AIP Conf. Proc. 1822, 020004, 2017.
  • [22] ISO-9013, “Thermal cutting — Classification of thermal cuts — Geometrical product specification and quality tolerances,” Geneva, 2002.
  • [23] C.M. Sonsino, “Course of SN-curves especially in the high-cycle fatigue regime with regard to component design and safety,” Int. J. Fatigue 29, 2246–2258 (2007).
  • [24] P. Strzelecki, J. Sempruch, and K. Nowicki, “Comparing guidelines concerning construction of the S-N curve within limited fatigue life range,” Polish Marit. Res. 22(3), 67–74 (2015).
  • [25] ISO-12107, “Metallic materials – fatigue testing – statistical planning and analysis of data,” Geneva, 2012.
  • [26] PN-H-04326:1796, “Fatigue tests of metals – Bending tests,” 1976.
  • [27] W. Weibull, A statistical theory of the strength of materials 151. Stockholm, 1939.
  • [28] G. Szala and B. Ligaj, Two-parameter fatigue characteristics of construction steels and their experimental verification (in Polisch). Bydgoszcz: Uniwersytet Technologiczno-Przyrodniczy im. J.J. Śniadeckich – Instytut Technologii Eksploatacji – PIB, 2011.
  • [29] T. Tomaszewski, P. Strzelecki, A. Mazurkiewicz, and J. Musiał, “Probabilistic Estimation of Fatigue Strength for Axial and Bending Loading in High-Cycle Fatigue,” Materials (Basel). 13, 1148 (2020).
  • [30] D.F. Pessoa, P. Herwig, A. Wetzig, and M. Zimmermann, “Influence of surface condition due to laser beam cutting on the fatigue behavior of metastable austenitic stainless steel AISI 304,” Eng. Fract. Mech. 185, 227–240 (2017).
  • [31] P. Heuler and H. Klätschke, “Generation and use of standardised load spectra and load-time histories,” Int. J. Fatigue 27, 974–990 (2005).
  • [32] S.P. Zhu, Q. Liu, W. Peng, and X. C. Zhang, “Computational-experimental approaches for fatigue reliability assessment of turbine bladed disks,” Int. J. Mech. Sci. 142–143, 502–517 (2018).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8eb9353f-9c63-4064-9a6f-04f7646ffb23
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.