PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Polyamide 1010/Polythioamide Blend Reinforced with Graphene Nanoplatelet for Automotive Part Application

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Novel polythioamide (PTA) was prepared and blended with polyamide 1010 (PA1010). Based on morphology, molecular weight, polydispersity index, thermal, and shear stress behavior, PA1010/PTA (90:10) blend was opted as matrix for graphene nanoplatelet (GNP) reinforcement. Inclusion of functional GNP resulted in crumpled gyroid morphology. T0 (502°C) of PA1010/PTA/GNP was increased by 145°C than unfilled blend (357°C). Limiting oxygen index measurement indicated better non-flammability of PA1010/PTA/GNP1-3 nanocomposites (53-55%) relative to PA1010/PTA1-3 (41-48%). PA1010/PTA/GNP1-3 also attained V-0 rating in UL94. Furthermore, PA1010/PTA/GNP3 nanocomposite revealed optimum tensile strength (40 MPa), impact strength (1.9 MPa), and flexural modulus (1373 MPa) to manufacture automotive part.
Rocznik
Strony
24--36
Opis fizyczny
Bibliogr. 29 poz., rys., wykr., tab.
Twórcy
autor
  • Nanoscience and Technology Department, National Centre For Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan
Bibliografia
  • 1. Jia Y., He H., Peng X., Meng S., Chen J., Geng, Y., Preparation of a new filament based on polyamide-6 for three-dimensional printing. Polym. Engineer. Sci. (2017) DOI,10.1002/pen.24515.
  • 2. Kausar A., Polycarbonate/Polypropylene-Graft-Maleic Anhydride and Nano-Zeolite-Based Nanocomposite Membrane, Mechanical and Gas Separation Performance. Adv. Mater. Sci. 16 (2016)17-28.
  • 3. Kausar A., Ullah W., Muhammad B., Siddiq, M., Novel mechanically stable, heat resistant and nonflammable functionalized polystyrene/expanded graphite nanocomposites, Adv. Mater. Sci. 14 (2014) 61-74.
  • 4. Kausar A., Mechanical, thermal, and electrical properties of epoxy matrix composites reinforced with polyamide-grafted-MWCNT/poly (azo-pyridine-benzophenone-imide)/polyaniline nanofibers. Int. J. Polym. Mater. Polym. Biomater. 63 (2014) 831-839.
  • 5. Katunin A., Krukiewicz K., Herega A., Catalanotti, G., Concept of a conducting composite material for lightning strike protection. Adv. Mater. Sci. 16 (2016) 32-46.
  • 6. Budzik M., Pilawka R., Imielińska K., Jumel J., Shanahan M., Fracture of Aluminium Joints Bonded with Epoxy Adhesive Reinforced by MMT Nanoparticles. Adv. Mater. Sci. 9 (2009) 4-11.
  • 7. Zhang S.L., Wang G.B., Jiang Z.H., Wang D., Ma R.T., Wu Z.W., Impact properties, phase structure, compatibility, and fracture morphology of polyamide-1010/thermoplastic poly (ester urethane) elastomer blends. J. Polym. Sci. B, Polym. Phys. 43 (2005) 1177-1185.
  • 8. Kausar A., Effect of nanofiller dispersion on morphology, mechanical and conducting properties of electroactive shape memory Poly (urethane-urea)/functional nanodiamond composite, Adv. Mater. Sci. 15 (2015) 14-28.
  • 9. Kausar A., Mechanical and Thermal Properties of Polyamide 1010 Composites Filled with Nanodiamond/Graphitized Carbon Black Nanoparticles. Am. J. Polym. Sci. Engineer. 3 (2015) 161-171.
  • 10. Lu Z., Wu A., Ou X., Zhang S., Niu J., Ji S., Ling Y., Enhanced anti-aging and mechanical properties of polyamide 1010 by sol-hydrothermal synthetic titanium dioxide-coated kaolinite addition. J. Alloys Comp. 693 (2017) 381-388.
  • 11. Li B., Zhang L., ESR approach to free radicals trapped in irradiated polyamide-1010. Rad. Phys. Chem. 49 (1997) 395-397.
  • 12. Sangroniz L., Palacios JK., Fernández M., Eguiazabal JI., Santamaria A., Müller AJ., Linear and non-linear rheological behavior of polypropylene/polyamide blends modified with a compatibilizer agent and nanosilica and its relationship with the morphology. Eur. Polym. J. 83 (2016) 10-21.
  • 13. Kausar A., Ur Rahman A., Functional Graphene Nanoplatelet Reinforced Epoxy Resin and Polystyrene-based Block Copolymer Nanocomposite. Full. Nanotub. Carb. Nanostruct. 24 (2016) 235-242.
  • 14. Kulkarni, H., Tambe, P., Joshi, G., 2017. High concentration exfoliation of graphene in ethyl alcohol using block copolymer surfactant and its influence on properties of epoxy Nanocomposites. Full. Nanotub. Carb. Nanostruct. (2016) DOI,10.1080/1536383X.2017.1283616.
  • 15. Wang F., Drzal LT., Qin Y., Huang Z., Enhancement of fracture toughness, mechanical and thermal properties of rubber/epoxy composites by incorporation of graphene nanoplatelets. Compos. Part A, Appl. Sci. Manufact. 87 (2016) 10-22.
  • 16. Wang F., Drzal L.T., Qin Y., Huang Z., Mechanical properties and thermal conductivity of graphene nanoplatelet/epoxy composites. J. Mater. Sci, 50 (2015) 1082-1093.
  • 17. Ma PC., Siddiqui NA., Marom G., Kim JK., Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites, a review. Compos. Part A, Appl. Sci. Manufact, 41 (2010) 1345-1367.
  • 18. Cui L.J., Wang YB., Xiu W.J., Wang W.Y., Xu LH., Xu X.B., Meng Y., Li LY., Gao J., Chen LT., Geng HZ., Effect of functionalization of multi-walled carbon nanotube on the curing behavior and mechanical property of multi-walled carbon nanotube/epoxy composites. Mater. Des. 49 (2013) 279-284.
  • 19. Anwar Z., Kausar A., Khan LA., Muhammad, B., Modified graphene nanoplatelet and epoxy/block copolymer-based nanocomposite, physical characteristic and EMI shielding studies. Nanocomposites, 2 (2016) 141-151.
  • 20. Paszkiewicz S., Szymczyk A., Livanov K., Wagner H.D., Roslaniec, Z., 2015. Enhanced thermal and mechanical properties of poly (trimethylene terephthalate-block-poly (tetramethylene oxide) segmented copolymer based hybrid nanocomposites prepared by in situ polymerization via synergy effect between SWCNTs and graphene nanoplatelets. Express Polym. Lett, 9 (2015) 509-524.
  • 21. Itsuno S., Takahashi, S., Inside Cover, Synthesis of Chiral Polyamides Containing an (R, R)-1,2-Diphenylethylenediamine Monosulfonamide Structure and Their Application to Asymmetric Transfer Hydrogenation Catalysis (ChemCatChem 3/2017). ChemCatChem, 9 (2017) 375-375.
  • 22. Nishitani Y., Mukaida J., Yamanaka T., Kajiyama T., Kitano T., In Holzer CH, Payer M, editors. AIP Conference Proceedings, AIP Publishing, 1779 (2016) 060004.
  • 23. Yan D., Zhang H.B., Jia Y., Hu J., Qi X.Y., Zhang Z., Yu, Z.Z., Improved electrical conductivity of polyamide 12/graphene nanocomposites with maleated polyethylene-octene rubber prepared by melt compounding. ACS Appl. Mater. Interface. 4 (2012) 4740-4745.
  • 24. Yousef S., Visco A., Galtieri G., Nocita D., Espro C., Wear behaviour of UHMWPE reinforced by carbon nanofiller and paraffin oil for joint replacement. Mater. Sci. Engineer. C. 73 (2017) 234-244.
  • 25. Kim J.Y., Song J.Y., Lee J.E., Park S.K., Rheological properties and microstructures of Carbopol gel network system. Colloid Polym. Sci. 281 (2003) 614-623.
  • 26. Beck Tan N.C., Tai S.K,. Bribert R.M., Morphology control and interfacial reinforcement in reactive polystyrene/amorphous polyamide blends. Polymer. 37 (1996) 3509-3519.
  • 27. Wang J.Q., Han Z.D., The combustion behavior of polyacrylate ester/graphite oxide composites. Polym Adv Technol. 17 (2006) 335-340.
  • 28. Nikiforov AA., Okhotina NA., Fayzullin IZ., Volfson SI., Rinberg R., Kroll L., In Gorkunov ES, Panin VE, Ramasubbu S, editors.AIP Conference Proceedings AIP Publishing. 1785 (2016) 030018.
  • 29. Hong C.H., Lee Y.B., Bae J.W., Jho J.Y., Nam BU., Hwang T.W., Preparation and mechanical properties of polypropylene/clay nanocomposites for automotive parts application. J. Appl. Polym. Sci. 98 (2005) 427-433.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8eb74345-fa0c-401c-8d68-8680868513dd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.