Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Post-harvest handling / processing of fishery commodities requires large amounts of water and energy to overcome their perishable properties. Water is needed as raw/auxiliary material and to ensure that the production process and its environment meet the sanitary and hygiene principles. Meanwhile, large amount of energy is required for the transportation of raw materials and products, cold chain system during the process and operations of processing machines. They contribute towards the environmental impact of fish processing. This study used life cycle assessment to estimate the potential environmental impact of small scale mackerel fish processing. The results showed that the fish processing has contributed to 0.079 kg SO2 eq acidification potential, 9.66 kg CO2 eq climate changGWP 100, 0.02 kg PO4 eq Eutrophication-generic, 0.17 kg 1.4 DCB eq human toxicity-HTP inf, and 0.0015 kg ethylene eq photochemical oxidation-high NOx. Wastewater treatment implementation simulation showed elimination of direct emissions that contribute to eutrophication and increasing the potential of other process associated with energy consumption.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
65--74
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
autor
- Master Program of Environmental Studies, School of Postgraduate Studies Diponegoro University, Semarang, Indonesia
autor
- Master Program of Environmental Studies, School of Postgraduate Studies Diponegoro University, Semarang, Indonesia
- Chemical Engineering Departement, Faculty of Engineering Diponegoro University, Semarang, Indonesia
Bibliografia
- 1. Arvanitoyannis, I.S., & Kassaveti, A. 2008. Fish industry waste: Treatments, environmental impacts, current and potential uses. International Journal of Food Science and Technology, 43(4), 726–745. https://doi.org/10.1111/j.1365–2621.2006.01513.x
- 2. Doorn, M.R.J., Towprayoon, S., Vieira, S.M.M., Irving, W., Palmer, C., Pipatti, R., & Wang, C. 2006. Wastewater Treatment and Discharge. IPCC Guidelines for National Greenhouse Gas Inventories. Prepared by the National Greenhouse Gas Inventories Programme. IGES, Japan.
- 3. Duangpaseuth, SDas, Q., Chotchamlong, N., Ariunbaatar, J., Khunchornyakong, A., & Prashanthini, V. 2010. Seafood Processing.
- 4. Foley, J., de Haas, D., Hartley, K., & Lant, P. 2010. Comprehensive life cycle inventories of alternative wastewater treatment systems. Water Research, 44(5), 1654–1666. https://doi.org/10.1016/j.watres.2009.11.031
- 5. Glick, S., Guggemos, A.A., & Asce, A.M. 2005. Rethinking Wastewater-Treatment Infrastructure : Case Study Using Life-Cycle Cost and Life-Cycle Assessment to Highlight Sustainability Considerations, (Coldham 1996), 1–8. https://doi.org/10.1061/(ASCE)CO.1943–7862.0000762.
- 6. Hall, G.M., & Kose, S. 2014. Fish Processing Installations: Sustainable Operation. In I.S. Boziaris (Ed.), Seafood Processing: Technology, Quality and Safety (pp. 1–488). West Sussex: John Wiley & Sons. https://doi.org/10.1002/9781118346174
- 7. International assessment – Principles and framework 1997. International Organization for Standardization.
- 8. Kalbar, P.P., Karmakar, S., & Asolekar, S.R. 2013. Assessment of wastewater treatment technologies : life cycle approach, 27(3), 261–268. https://doi. org/10.1111/wej.12006
- 9. Kementerian Lingkungan Hidup 2012. Pedoman Penyelenggaraan Inventarisasi Gas Rumah Kaca Nasional Buku II. Jakarta: Kementerian Lingkungan Hidup (in Indonesian).
- 10. Midgley, P., Wang, M., Berntsen, T., Bey, I., Brasseur, G., Buja, L., Yantosca, R. 2001. Atmospheric Chemistry and Grenhouse Gases. In Climate Change 2001: The Scientific Basis. IPCC. Retrieved from https://www.ipcc.ch/ipccreports/tar/wg1/pdf/TAR-04.PDF
- 11. Rizaldi Boer, Dewi, R. G., Siagian, U. W., Ardiansyah, M., Surmaini, E., Ridha, D. M., et al. 2012. Pedoman Penyelenggaraan Inventarisasi Gas Rumah Kaca Nasional Buku Ii. Metodologi Penghitungan Tingkat Emisi Gas Rumah Kaca Kegiatan Pengadaan Dan Penggunaan Energi (Vol. 1). Kementerian Lingkungan Hidup (In indonesian).
- 12. Said, N.I. 2017. Teknologi Pengolahan Air Limbah. Jakarta: Penerbit Erlangga (In indonesian).
- 13. Snip, L.J.P. 2010. Quantifying the greenhouse gas emissions of wastewater treatment plants. Wageningen University. Retrieved from http://modeleau.fsg.ulaval.ca/fileadmin/modeleau/documents/Publications/MSc_s/sniplaura_msc.pdf
- 14. Suhadi, D.R., & Febrina, A.S. 2013. Pedoman Teknis Penyusunan Inventarisasi Emisi Pencemar Udara Di Perkotaan, 153 (In indonesian).
- 15. Sunny, N., & Mathai P.L. 2013. Physicochemical process for fish processing wastewater. International Journal of Innovative Research in Science, Engineering and Technology, 2(4), 901–905.
- 16. Tay, J.-H., Show, K.-Y., & Hung, Y.-T. 2004. Seafood Processing Wastewater Treatment. In: L.K. Wang, Y. Hung, H.H. Lo, & C. Yapijakise (Eds.), Handbook of industrial and hazardous wastes treatment (2nd ed.). New York, Basel: Marcel Dekker, Inc., 29–66.
- 17. Widiyanto, A., Kato, S., & Maruyana, N. 2003. Environmental Impact Analysis of Indonesian Electric Generation Systems. JSME International Journal Series B, 46(4), 650–659. https://doi. org/10.1299/jsmeb.46.650.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8eb25338-2a37-43ef-8d76-a99b2dc4aa33