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Abstract. This paper studies the potential of the 

application of the Recurrent Neural Networks, as well as 

the Deep Neural Networks in the field of the finances and 

trading. In particular, their use in the stock price 

predicting software. The concepts of the RNNs and DNNs 

are provided and explained thoroughly. Both techniques 

RNNs and DNNs are utilized in the implementation of the 

stock price predicting software. Two separate versions of 

the software are created in order to demonstrate the main 

differences between the algorithms, as well as to 

determine the best of the two. Each version is thoroughly 

examined. The comparison of each of the algorithms is 

performed and highlighted. Examples of the 

implementations of the software, utilizing each of the 

algorithms on big volumes of stock data, for stock price 

prediction are provided. The article summarizes the 

concept of stock price prediction backed by the popular 

machine learning algorithms and its application in the 

nowadays world. 

Keywords: neural network, deep, recurrent, activation 

function, feedforward, neuron, hidden layer, stock price 

prediction. 

INTRODUCTION 

Over the past two decades Machine Learning has 

become one of the mainstays of information technology 

and with that, a rather central, albeit usually hidden, part 

of our life [6]. With the ever-increasing amounts of data 

becoming available there is good reason to believe that 

smart data analysis will become even more pervasive as a 

necessary ingredient for technological progress [2-5]. 

The extremely large amounts of digital data collected 

everyday provide us with the opportunities we could only 

dream of before. The other contributing factor is the 

constant increases in the computing power which actually 

allow us to perform these extremely complex calculations. 

These events allowed us to rediscover the true power of 

the machine learning in today’s complex world. 

Such progress in this field has led to many new 

discoveries and found useful ways of application of the 

various machine learning algorithms, such as: image 

recognition, speech recognition, natural language 

processing, event prediction, etc [20]. 

The process of prediction of the stock prices using 

the ML techniques is the subject of this research. 

The purpose of the article is to study the ways 

of utilization of the RNNs and DNNs in the real world 

applications, as well as to assess the effectiveness of each 

of them [8-11].  

THE PRELIMINARY SEARCH, ANALYSIS OF THE 

PROBLEM 

Research task is to demonstrate the power of the 

RNNs and DNNs and their practical application in the 

field of the finances and trading, as well as to provide a 

software which will help with the stock price prediction. 

In order to achieve the research goal, the following 

problems had to be solved: 

1) A thorough review of both techniques RNNs and 

DNNs; 

2) Implementation of the stock price predicting 

software backed by the RNNs and DNNs; 

3) Testing of the implemented pieces of software; 

4) Comparison of the algorithms and determination 

of the best one for the practical use in the real world. 

RECURRENT NEURAL NETWORKS 

The human brain is a recurrent neural network 

(RNN): a network of neurons with feedback connections. 

It can learn many behaviors/sequence processing 

tasks/algorithms/programs that are not learnable by 

traditional machine learning methods. This explains the 

rapidly growing interest in artificial RNNs for technical 

applications: general computers which can learn 

algorithms to map input sequences to output sequences, 

with or without a teacher. They are computationally more 

powerful and biologically more plausible than other 

adaptive approaches such as Hidden Markov Models (no 

continuous internal states), feedforward networks and 

Support Vector Machines (no internal states at all) [5]. 

Early RNNs of the 1990s could not learn to look far 

back into the past. Their problems were first rigorously 

analyzed on Schmidhuber's RNN long time lag project by 

his former PhD student Hochreiter(1991). A feedback 

network called "Long Short-Term Memory" (LSTM, 

Neural Comp., 1997) overcomes the fundamental 

problems of traditional RNNs, and efficiently learns to 

solve many previously unusual tasks involving [12-14]: 

1. Recognition of temporally extended patterns in 

noisy input sequences 

2. Recognition of the temporal order of widely 

separated events in noisy input streams 

3. Extraction of information conveyed by the 

temporal distance between events 

4. Stable generation of precisely timed rhythms, 

smooth and non-smooth periodic trajectories 

mailto:nataliya.i.boyko@lpnu.ua
http://www.idsia.ch/~juergen
http://ni.cs.tu-berlin.de/~hochreit/
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5. Robust storage of high-precision real numbers 

across extended time intervals. 

The fundamental feature of a Recurrent Neural 

Network (RNN) is that the network contains at least one 

feed-back connection, so the activations can flow round in 

a loop. That enables the networks to do temporal 

processing and learn sequences, e.g., perform sequence 

recognition / reproduction or temporal 

association/prediction. Recurrent neural network 

architectures can have many different forms. One 

common type consists of a standard Multi-

Layer Perceptron (MLP) plus added loops. These can 

exploit the powerful non-linear mapping capabilities of 

the MLP, and also have some form of memory. Others 

have more uniform structures, potentially with every 

neuron connected to all the others, and may also have 

stochastic activation functions. For simple architectures 

and deterministic activation functions, learning can 

be achieved using similar gradient descent procedures to 

those leading to the back-propagation algorithm for feed-

forward networks. When the activations are stochastic, 

simulated annealing approaches may be more appropriate. 

We will look at a few of the most important types and 

features of recurrent networks [9]. 

Let’s consider the simplest form of fully recurrent 

neural network which is an MLP with the previous set of 

hidden unit activations feeding back into the network 

along with the inputs (fig. 1): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The simplest form of a fully recurrent neural 

network 

 

It’s also worth noting that the time t has to 

be discretized, with the activations updated at each time 

step. The time scale might correspond to the operation 

of real neurons, or for artificial systems any time step 

size appropriate for the given problem can be used. A 

delay unit needs to be introduced to hold activations until 

they are processed at the next time step [10]. 

Since one can think about recurrent networks in 

terms of their properties as dynamical systems, it is 

natural to ask about their 

stability, controllability and observability: Stability 

concerns the boundedness over time of the network 

outputs, and the response of the network outputs to small 

changes (e.g., to the network inputs or 

weights). Controllability is concerned with whether it is 

possible to control the dynamic behaviour. A recurrent 

neural network is said to be controllable if an initial state 

is steerable to any desired state within a finite number of 

time steps. Observability is concerned with whether it is 

possible to observe the results of the control applied. A 

recurrent network is said to be observable if the state of 

the network can be determined from a finite set 

of input/output measurements [6-8]. 

Consider the following visualizations of the recurrent 

neuron and the actual recurrent network, which give a 

better idea of what processing takes place behind the 

scenes (fig. 2): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. An unfolded Recurrent Neural Network 

 

A Recurrent Neural Network (RNN) (fig. 2) can be 

unfolded based on the Recurrent Neurons. Each of the 

recurrent neurons receives some input xt (Input at time t)  

and the previous state ht-1(state at time t-1), and then 

calculates the next state based on the previously 

mentioned input data according to the following formulas:  

ht = σh(Wh * xt + Uh * ht-1 + bh) (1) 

yt = σy(Wy * ht + by), 

where xt is input vector; ht is hidden layer vector; yt is 

output vector; W, U and b are parameter matrices and 

vector; σh and σy are activation functions. We can see 

clearly that the same formula that was used to calculate a 

new state in a single recurrent neuron remains valid in the 

unfolded RNN, which makes sense. It is also worth 

pointing out that the weights in the final RNN are shared 

over time! 

Applications of the RNNs include adaptive robotics 

and control, handwriting recognition, speech recognition, 

keyword spotting, music composition, attentive vision, 

protein analysis, stock market prediction, and many other 

sequence problems [18-19]. 

LONG SHORT TERM MEMORY NETWORKS 

(LSTM) 

Long Short Term Memory networks or LSTMs are a 

special kind of Recurrent Neural Networks (RNNs), 

capable of learning long-term dependencies, which 

address the vanishing/exploding gradient problem and 

allow learning of the long-term dependencies. They were 

introduced by Hochreiter and Schmidhuber (1997), and 

were refined and popularized by many people in 

following work. This type of networks was praised for 

their pretty simple structure and wide range of 

applications. They work tremendously well on a large 
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variety of problems, and are now widely used, and just 

recently risen to prominence with the state-of-the-art 

performance in speech recognition, language modelling, 

translation, image captioning. LSTMs are explicitly 

designed to avoid the long-term dependency problem, as 

remembering information for long periods of time is 

practically their default behavior, not something they 

struggle to learn! 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. General Structure of an LSTM 

 

Central idea of the LSTMs lies in their memory cells 

(blocks) which can maintain its state over time, consisting 

of an explicit memory (aka the cell state vector) and 

gating units which regulate the information flow into and 

out of memory (see fig.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. LSTM Memory cell 

 

All recurrent neural networks have the form of a 

chain of repeating modules of neural network. In standard 

RNNs, this repeating module will have a very simple 

structure, such as a single layer with tanh activation 

function (hyperbolic tangent). LSTMs also have this 

chain-like structure, but the repeating module has a 

different structure, main difference of which is instead of 

having a single neural network layer, there are four, 

interacting in a very special way. 

Applications are similar to those of typical RNNs, but 

with more complications. 

 

STOCK PRICE PREDICTION USING RNN 
# inputs.shape = (number of examples, number of input, dimension of 
each input). 

        self.learning_rate = tf.placeholder(tf.float32, None, 

name="learning_rate") 

        # Stock symbols are mapped to integers. 

        self.symbols = tf.placeholder(tf.int32, [None, 1], 
name='stock_labels') 

        self.inputs = tf.placeholder(tf.float32, [None, self.num_steps, 

self.input_size], name="inputs") 
        self.targets = tf.placeholder(tf.float32, [None, self.input_size], 

name="targets") 
 

        def _create_one_cell(): 

            lstm_cell = tf.contrib.rnn.LSTMCell(self.lstm_size, 
state_is_tuple=True) 

            if self.keep_prob < 1.0: 

                lstm_cell = tf.contrib.rnn.DropoutWrapper(lstm_cell, 
output_keep_prob=self.keep_prob) 

            return lstm_cell 

 
        cell = tf.contrib.rnn.MultiRNNCell( 

            [_create_one_cell() for _ in range(self.num_layers)], 

            state_is_tuple=True 
        ) if self.num_layers > 1 else _create_one_cell() 

 

        if self.embed_size > 0: 
            self.embed_matrix = tf.Variable( 

                tf.random_uniform([self.stock_count, self.embed_size], -1.0, 

1.0), 
                name="embed_matrix" 

            ) 

            sym_embeds = tf.nn.embedding_lookup(self.embed_matrix, 
self.symbols) 

             

            # stock_label_embeds.shape = (batch_size, embedding_size) 
            stacked_symbols = tf.tile(self.symbols, [1, self.num_steps], 

name='stacked_stock_labels') 

            stacked_embeds = tf.nn.embedding_lookup(self.embed_matrix, 
stacked_symbols) 

 

            # After concat, inputs.shape = (batch_size, num_steps, lstm_size 
+ embed_size) 

            self.inputs_with_embed = tf.concat([self.inputs, 

stacked_embeds], axis=2, name="inputs_with_embed") 
        else: 

            self.inputs_with_embed = tf.identity(self.inputs) 

 
        # Run dynamic RNN 

        val, state_ = tf.nn.dynamic_rnn(cell, self.inputs, dtype=tf.float32, 

scope="dynamic_rnn") 
 

        # Before transpose, val.get_shape() = (batch_size, num_steps, 

lstm_size) 
        # After transpose, val.get_shape() = (num_steps, batch_size, 

lstm_size) 

        val = tf.transpose(val, [1, 0, 2]) 
 

        last = tf.gather(val, int(val.get_shape()[0]) - 1, name="lstm_state") 

        ws = tf.Variable(tf.truncated_normal([self.lstm_size, 
self.input_size]), name="w") 

        bias = tf.Variable(tf.constant(0.1, shape=[self.input_size]), 

name="b") 
        self.pred = tf.matmul(last, ws) + bias 

        self.last_sum = tf.summary.histogram("lstm_state", last) 
        self.w_sum = tf.summary.histogram("w", ws) 

        self.b_sum = tf.summary.histogram("b", bias) 

        self.pred_summ = tf.summary.histogram("pred", self.pred) 
 

        # self.loss = -tf.reduce_sum(targets * 

tf.log(tf.clip_by_value(prediction, 1e-10, 1.0))) 
        self.loss = tf.reduce_mean(tf.square(self.pred - self.targets), 

name="loss_mse") 

        self.optim = 
tf.train.RMSPropOptimizer(self.learning_rate).minimize(self.loss, 

name="rmsprop_optim") 

        self.loss_sum = tf.summary.scalar("loss_mse", self.loss) 
        self.learning_rate_sum = tf.summary.scalar("learning_rate", 

self.learning_rate) 

        self.t_vars = tf.trainable_variables() 
        self.saver = tf.train.Saver() 
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Fig. 5. Prediction results 

 

DEEP NEURAL NETWORKS 

A neuron is an information-processing unit that is 

fundamental to the operation of a neural network. 

Fig. 6. Model of neuron 

 

In mathematical terms: 

 (2) 

, 

where x1, x2, …, xm are the input signals; wk1, wk2, …, 

wkm are the weights of neuron k; bk is the bias; φ is the 

activation function. 

Multilayer perceptron is a class of feedforward 

artificial neural network. The network consists of a set of 

sensory units that constitute the input layer, one or more 

hidden layers of computation nodes, and an output layer 

of computed nodes.  

Hidden neurons enable the network to learn complex 

tasks by extracting progressively more meaningful 

features from the input patterns. 

The model of each neuron in the network unites a 

nonlinear activation function. Activation function must be 

smooth(differentiable everywhere). The two common 

activation functions are hyperbolic tangent and the 

logistic function. Alternative activation functions have 

been proposed, including the rectifier and softplus 

functions. 

 
Fig. 7. Plot of the rectifier 

 

The common method for training a neural network is 

error back-propagation. Learning occurs in the perceptron 

by changing connection weights after each piece of data is 

processed, based on the amount of error in the output 

compared to the expected result. Each layer of nodes 

trains on a distinct set of features based on the previous 

layer’s output. The further you advance into the neural 

net, the more complex the features your nodes can 

recognize, since they aggregate and 

recombine features from the previous layer. 

The network is fully connected if every 

node in each layer of the network is 

connected to every other node in the 

adjacent forward layer. If some of the 

communication links are missing from the 

network, the network is partially connected. 

MLPs are widely used for pattern 

classification, recognition, prediction and 

approximation. Therefore, one of the 

problems deep learning solves best is in 

processing and clustering the world’s raw, 

unlabeled media, discerning similarities and 

anomalies in data that no human has 

organized in a relational database or ever 

put a name to.  

COMPARING ALGORITHMS 

Deep neural network allow signals to transfer  one 

way only: from input to output. There are no feedback, 

the output of any layer does not affect that same layer. 

DNN takes a fixed size input and generates fixed-size 

outputs. Feedforward neural networks are ideally suitable 

for modeling relationships between a set of predictor or 

input variables and one or more output variables.  

Recurrent neural nets are neural networks that keep 

state between input samples. They remember previous 

input samples and use those to help classify the current 

input sample. They are mostly useful when the order of 

your data is important. Generally speaking, problems 

related to time-series data (data with a timestamp on 

them) are good candidates to be solved well with 

recurrent neural nets. Also RNN can handle arbitrary 

input/output lengths. 

Unlike a traditional deep neural network, which uses 

different weights at each layer, a RNN shares the same 

weights across all steps. This reflects the fact that we are 

performing the same task at each step, just with different 

inputs. This greatly reduces the total number of 

parameters we need to learn. 

DNN and RNN have different models of neuron. 

RNN use LSTM blocks, neurons that output influences 
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their input. DNN have an input layer of source nodes that 

projects onto an output layer of neurons, but not vice 

versa. 

STOCK PRICE PREDICTION USING DNN 

Deep learning model for predicting the S&P 500 

index based on price 500 units per minute. 

We need two cells in order to fit our model: X 

contains the network's inputs (the stock prices of all S&P 

500 constituents at time T = t) and Y the network's outputs 

(the index value of the S&P 500 at time T = t + 1). 

The model consists of four hidden layers. The first 

layer contains 1024 neurons, slightly more than double 

the size of the inputs. Subsequent hidden layers are half 

the size of the previous layer, which means 512, 256 and 

finally 128 neurons.  

Cells (data) and variables (weights and biases) need 

to be combined into a system of sequential matrix 

multiplications. 

The hidden layers of the network are transformed by 

activation function — ReLU. 

The optimizer takes care of the necessary 

computations that are used to adapt the network’s weight 

and bias variables during training. Here the Gradient 

descent optimizer is used. 
# Placeholder 
X = tf.placeholder(dtype=tf.float32, shape=[None, n_stocks]) 

Y = tf.placeholder(dtype=tf.float32, shape=[None]) 

 
# Model architecture parameters 

n_stocks = 500 

n_neurons_1 = 1024 
n_neurons_2 = 512 

n_neurons_3 = 256 

n_neurons_4 = 128 
n_target = 1 

 

# Layer 1: Variables for hidden weights and biases 
W_hidden_1 = tf.Variable(weight_initializer([n_stocks, n_neurons_1])) 

bias_hidden_1 = tf.Variable(bias_initializer([n_neurons_1])) 

# Layer 2: Variables for hidden weights and biases 
W_hidden_2 = tf.Variable(weight_initializer([n_neurons_1, 

n_neurons_2])) 

bias_hidden_2 = tf.Variable(bias_initializer([n_neurons_2])) 
# Layer 3: Variables for hidden weights and biases 

W_hidden_3 = tf.Variable(weight_initializer([n_neurons_2, 

n_neurons_3])) 
bias_hidden_3 = tf.Variable(bias_initializer([n_neurons_3])) 

# Layer 4: Variables for hidden weights and biases 

W_hidden_4 = tf.Variable(weight_initializer([n_neurons_3, 
n_neurons_4])) 

bias_hidden_4 = tf.Variable(bias_initializer([n_neurons_4])) 

 
# Output layer: Variables for output weights and biases 

W_out = tf.Variable(weight_initializer([n_neurons_4, n_target])) 
bias_out = tf.Variable(bias_initializer([n_target])) 

# Hidden layers 

hidden_1 = tf.nn.relu(tf.add(tf.matmul(X, W_hidden_1), bias_hidden_1)) 
hidden_2 = tf.nn.relu(tf.add(tf.matmul(hidden_1, W_hidden_2), 

bias_hidden_2)) 

hidden_3 = tf.nn.relu(tf.add(tf.matmul(hidden_2, W_hidden_3), 
bias_hidden_3)) 

hidden_4 = tf.nn.relu(tf.add(tf.matmul(hidden_3, W_hidden_4), 

bias_hidden_4)) 
 

# Output layer (must be transposed) 

out = tf.transpose(tf.add(tf.matmul(hidden_4, W_out), bias_out)) 
# Cost function 

mse = tf.reduce_mean(tf.squared_difference(out, Y)) 

# Optimizer 
learning_rate = 0.01 

opt = tf.train.GradientDescentOptimizer(learning_rate).minimize(mse) 

# Initializers 

sigma = 1 
weight_initializer = tf.variance_scaling_initializer(mode="fan_avg", 

distribution="uniform", scale=sigma) 

bias_initializer = tf.zeros_initializer() 
# Make Session 

net = tf.Session() 
# Run initializer 

net.run(tf.global_variables_initializer()) 

# Number of epochs and batch size 
epochs = 10 

batch_size = 256 

 
for e in range(epochs): 

 

   # Shuffle training data 
   shuffle_indices = np.random.permutation(np.arange(len(y_train))) 

   X_train = X_train[shuffle_indices] 

   y_train = y_train[shuffle_indices] 
   # Minibatch training 

   for i in range(0, len(y_train) // batch_size): 

       start = i * batch_size 
       batch_x = X_train[start:start + batch_size] 

       batch_y = y_train[start:start + batch_size] 

       # Run optimizer with batch 
       net.run(opt, feed_dict={X: batch_x, Y: batch_y})     

# Prediction 

pred = net.run(out, feed_dict={X: X_test}) 
print(pred) 

# Print final MSE after Training 

mse_final = net.run(mse, feed_dict={X: X_test, Y: y_test}) 
print(mse_final) 

 
Fig. 8. Predicted results 

 

CONCLUSIONS 

Thanks to the constant advances in the field of the 

Machine Learning and increases in computing power, 

new horizons are opening for the scientists all over the 

world. Existing machine learning algorithms already 

found their place in today’s complex world. The most 

common applications such as image recognition, language 

modelling, state-of-the-art classification and decision 

making systems are already making a huge impact on our 

lives, and the power of their impact will only grow bigger, 

as the amount of data collected every day increases. 

Based on the results from the implemented pieces of 

software we’ve seen a clear picture of what each kind of 

the network is capable of, and how effective each of them 

is. It has also been demonstrated with a good example that 

the RNN-based or DNN-based built on LSTMs networks 

work the best for the kind of problems we were solving, 
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as they provide a “memory” of all of the states and based 

on those states make a better, more real-world-like, 

predictions; while the ones that are based on the DNNs 

with no internal LSTM layers produce more noisy and 

less consistent results. Despite the good results produced 

by the implementations in our experiments, one can’t be 

too sure to fully rely on them without any side input from 

the human; however one can use them as a great tool to 

boost the efficiency and increase the profits in some sort 

of the financial institution. 
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