
ECONTECHMOD. AN INTERNATIONAL QUARTERLY JOURNAL – 2018, Vol. 07, No. 2, 3-8

Forecasting economic and financial indicators by supply of deep and recovery

neural networks

N. Boyko, A. Ivanets, M. Bosik

Lviv Polytechnic National University, Lviv, Uktaine; e-mail: nataliya.i.boyko@lpnu.ua

Received February 18.2018: accepted May 20.2018

Abstract. This paper studies the potential of the

application of the Recurrent Neural Networks, as well as

the Deep Neural Networks in the field of the finances and

trading. In particular, their use in the stock price

predicting software. The concepts of the RNNs and DNNs

are provided and explained thoroughly. Both techniques

RNNs and DNNs are utilized in the implementation of the

stock price predicting software. Two separate versions of

the software are created in order to demonstrate the main

differences between the algorithms, as well as to

determine the best of the two. Each version is thoroughly

examined. The comparison of each of the algorithms is

performed and highlighted. Examples of the

implementations of the software, utilizing each of the

algorithms on big volumes of stock data, for stock price

prediction are provided. The article summarizes the

concept of stock price prediction backed by the popular

machine learning algorithms and its application in the

nowadays world.

Keywords: neural network, deep, recurrent, activation

function, feedforward, neuron, hidden layer, stock price

prediction.

INTRODUCTION

Over the past two decades Machine Learning has

become one of the mainstays of information technology

and with that, a rather central, albeit usually hidden, part

of our life [6]. With the ever-increasing amounts of data

becoming available there is good reason to believe that

smart data analysis will become even more pervasive as a

necessary ingredient for technological progress [2-5].

The extremely large amounts of digital data collected

everyday provide us with the opportunities we could only

dream of before. The other contributing factor is the

constant increases in the computing power which actually

allow us to perform these extremely complex calculations.

These events allowed us to rediscover the true power of

the machine learning in today’s complex world.

Such progress in this field has led to many new

discoveries and found useful ways of application of the

various machine learning algorithms, such as: image

recognition, speech recognition, natural language

processing, event prediction, etc [20].

The process of prediction of the stock prices using

the ML techniques is the subject of this research.

The purpose of the article is to study the ways

of utilization of the RNNs and DNNs in the real world

applications, as well as to assess the effectiveness of each

of them [8-11].

THE PRELIMINARY SEARCH, ANALYSIS OF THE

PROBLEM

Research task is to demonstrate the power of the

RNNs and DNNs and their practical application in the

field of the finances and trading, as well as to provide a

software which will help with the stock price prediction.

In order to achieve the research goal, the following

problems had to be solved:

1) A thorough review of both techniques RNNs and

DNNs;

2) Implementation of the stock price predicting

software backed by the RNNs and DNNs;

3) Testing of the implemented pieces of software;

4) Comparison of the algorithms and determination

of the best one for the practical use in the real world.

RECURRENT NEURAL NETWORKS

The human brain is a recurrent neural network

(RNN): a network of neurons with feedback connections.

It can learn many behaviors/sequence processing

tasks/algorithms/programs that are not learnable by

traditional machine learning methods. This explains the

rapidly growing interest in artificial RNNs for technical

applications: general computers which can learn

algorithms to map input sequences to output sequences,

with or without a teacher. They are computationally more

powerful and biologically more plausible than other

adaptive approaches such as Hidden Markov Models (no

continuous internal states), feedforward networks and

Support Vector Machines (no internal states at all) [5].

Early RNNs of the 1990s could not learn to look far

back into the past. Their problems were first rigorously

analyzed on Schmidhuber's RNN long time lag project by

his former PhD student Hochreiter(1991). A feedback

network called "Long Short-Term Memory" (LSTM,

Neural Comp., 1997) overcomes the fundamental

problems of traditional RNNs, and efficiently learns to

solve many previously unusual tasks involving [12-14]:

1. Recognition of temporally extended patterns in

noisy input sequences

2. Recognition of the temporal order of widely

separated events in noisy input streams

3. Extraction of information conveyed by the

temporal distance between events

4. Stable generation of precisely timed rhythms,

smooth and non-smooth periodic trajectories

mailto:nataliya.i.boyko@lpnu.ua
http://www.idsia.ch/~juergen
http://ni.cs.tu-berlin.de/~hochreit/

4 N. BOYKO, A. IVANETS, M. BOSIK

5. Robust storage of high-precision real numbers

across extended time intervals.

The fundamental feature of a Recurrent Neural

Network (RNN) is that the network contains at least one

feed-back connection, so the activations can flow round in

a loop. That enables the networks to do temporal

processing and learn sequences, e.g., perform sequence

recognition / reproduction or temporal

association/prediction. Recurrent neural network

architectures can have many different forms. One

common type consists of a standard Multi-

Layer Perceptron (MLP) plus added loops. These can

exploit the powerful non-linear mapping capabilities of

the MLP, and also have some form of memory. Others

have more uniform structures, potentially with every

neuron connected to all the others, and may also have

stochastic activation functions. For simple architectures

and deterministic activation functions, learning can

be achieved using similar gradient descent procedures to

those leading to the back-propagation algorithm for feed-

forward networks. When the activations are stochastic,

simulated annealing approaches may be more appropriate.

We will look at a few of the most important types and

features of recurrent networks [9].

Let’s consider the simplest form of fully recurrent

neural network which is an MLP with the previous set of

hidden unit activations feeding back into the network

along with the inputs (fig. 1):

Fig. 1. The simplest form of a fully recurrent neural

network

It’s also worth noting that the time t has to

be discretized, with the activations updated at each time

step. The time scale might correspond to the operation

of real neurons, or for artificial systems any time step

size appropriate for the given problem can be used. A

delay unit needs to be introduced to hold activations until

they are processed at the next time step [10].

Since one can think about recurrent networks in

terms of their properties as dynamical systems, it is

natural to ask about their

stability, controllability and observability: Stability

concerns the boundedness over time of the network

outputs, and the response of the network outputs to small

changes (e.g., to the network inputs or

weights). Controllability is concerned with whether it is

possible to control the dynamic behaviour. A recurrent

neural network is said to be controllable if an initial state

is steerable to any desired state within a finite number of

time steps. Observability is concerned with whether it is

possible to observe the results of the control applied. A

recurrent network is said to be observable if the state of

the network can be determined from a finite set

of input/output measurements [6-8].

Consider the following visualizations of the recurrent

neuron and the actual recurrent network, which give a

better idea of what processing takes place behind the

scenes (fig. 2):

Fig. 2. An unfolded Recurrent Neural Network

A Recurrent Neural Network (RNN) (fig. 2) can be

unfolded based on the Recurrent Neurons. Each of the

recurrent neurons receives some input xt (Input at time t)

and the previous state ht-1(state at time t-1), and then

calculates the next state based on the previously

mentioned input data according to the following formulas:

ht = σh(Wh * xt + Uh * ht-1 + bh) (1)

yt = σy(Wy * ht + by),

where xt is input vector; ht is hidden layer vector; yt is

output vector; W, U and b are parameter matrices and

vector; σh and σy are activation functions. We can see

clearly that the same formula that was used to calculate a

new state in a single recurrent neuron remains valid in the

unfolded RNN, which makes sense. It is also worth

pointing out that the weights in the final RNN are shared

over time!

Applications of the RNNs include adaptive robotics

and control, handwriting recognition, speech recognition,

keyword spotting, music composition, attentive vision,

protein analysis, stock market prediction, and many other

sequence problems [18-19].

LONG SHORT TERM MEMORY NETWORKS

(LSTM)

Long Short Term Memory networks or LSTMs are a

special kind of Recurrent Neural Networks (RNNs),

capable of learning long-term dependencies, which

address the vanishing/exploding gradient problem and

allow learning of the long-term dependencies. They were

introduced by Hochreiter and Schmidhuber (1997), and

were refined and popularized by many people in

following work. This type of networks was praised for

their pretty simple structure and wide range of

applications. They work tremendously well on a large

Outputs

Delay

Hidden Units

Inputs

ht-1

ht

ht-

1

xt

ht

xt

ht

С3

y3

h3

x3 h2

С2

y2

h2

x2 h1

С1

y1

h1

x1 h0

http://people.idsia.ch/~juergen/handwriting.html
http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf

FORECASTING ECONOMIC AND FINANCIAL INDICATORS… 5

variety of problems, and are now widely used, and just

recently risen to prominence with the state-of-the-art

performance in speech recognition, language modelling,

translation, image captioning. LSTMs are explicitly

designed to avoid the long-term dependency problem, as

remembering information for long periods of time is

practically their default behavior, not something they

struggle to learn!

Fig. 3. General Structure of an LSTM

Central idea of the LSTMs lies in their memory cells

(blocks) which can maintain its state over time, consisting

of an explicit memory (aka the cell state vector) and

gating units which regulate the information flow into and

out of memory (see fig.5).

Fig. 4. LSTM Memory cell

All recurrent neural networks have the form of a

chain of repeating modules of neural network. In standard

RNNs, this repeating module will have a very simple

structure, such as a single layer with tanh activation

function (hyperbolic tangent). LSTMs also have this

chain-like structure, but the repeating module has a

different structure, main difference of which is instead of

having a single neural network layer, there are four,

interacting in a very special way.

Applications are similar to those of typical RNNs, but

with more complications.

STOCK PRICE PREDICTION USING RNN
inputs.shape = (number of examples, number of input, dimension of
each input).

 self.learning_rate = tf.placeholder(tf.float32, None,

name="learning_rate")

 # Stock symbols are mapped to integers.

 self.symbols = tf.placeholder(tf.int32, [None, 1],
name='stock_labels')

 self.inputs = tf.placeholder(tf.float32, [None, self.num_steps,

self.input_size], name="inputs")
 self.targets = tf.placeholder(tf.float32, [None, self.input_size],

name="targets")

 def _create_one_cell():

 lstm_cell = tf.contrib.rnn.LSTMCell(self.lstm_size,
state_is_tuple=True)

 if self.keep_prob < 1.0:

 lstm_cell = tf.contrib.rnn.DropoutWrapper(lstm_cell,
output_keep_prob=self.keep_prob)

 return lstm_cell

 cell = tf.contrib.rnn.MultiRNNCell(

 [_create_one_cell() for _ in range(self.num_layers)],

 state_is_tuple=True
) if self.num_layers > 1 else _create_one_cell()

 if self.embed_size > 0:
 self.embed_matrix = tf.Variable(

 tf.random_uniform([self.stock_count, self.embed_size], -1.0,

1.0),
 name="embed_matrix"

)

 sym_embeds = tf.nn.embedding_lookup(self.embed_matrix,
self.symbols)

 # stock_label_embeds.shape = (batch_size, embedding_size)
 stacked_symbols = tf.tile(self.symbols, [1, self.num_steps],

name='stacked_stock_labels')

 stacked_embeds = tf.nn.embedding_lookup(self.embed_matrix,
stacked_symbols)

 # After concat, inputs.shape = (batch_size, num_steps, lstm_size
+ embed_size)

 self.inputs_with_embed = tf.concat([self.inputs,

stacked_embeds], axis=2, name="inputs_with_embed")
 else:

 self.inputs_with_embed = tf.identity(self.inputs)

 # Run dynamic RNN

 val, state_ = tf.nn.dynamic_rnn(cell, self.inputs, dtype=tf.float32,

scope="dynamic_rnn")

 # Before transpose, val.get_shape() = (batch_size, num_steps,

lstm_size)
 # After transpose, val.get_shape() = (num_steps, batch_size,

lstm_size)

 val = tf.transpose(val, [1, 0, 2])

 last = tf.gather(val, int(val.get_shape()[0]) - 1, name="lstm_state")

 ws = tf.Variable(tf.truncated_normal([self.lstm_size,
self.input_size]), name="w")

 bias = tf.Variable(tf.constant(0.1, shape=[self.input_size]),

name="b")
 self.pred = tf.matmul(last, ws) + bias

 self.last_sum = tf.summary.histogram("lstm_state", last)
 self.w_sum = tf.summary.histogram("w", ws)

 self.b_sum = tf.summary.histogram("b", bias)

 self.pred_summ = tf.summary.histogram("pred", self.pred)

 # self.loss = -tf.reduce_sum(targets *

tf.log(tf.clip_by_value(prediction, 1e-10, 1.0)))
 self.loss = tf.reduce_mean(tf.square(self.pred - self.targets),

name="loss_mse")

 self.optim =
tf.train.RMSPropOptimizer(self.learning_rate).minimize(self.loss,

name="rmsprop_optim")

 self.loss_sum = tf.summary.scalar("loss_mse", self.loss)
 self.learning_rate_sum = tf.summary.scalar("learning_rate",

self.learning_rate)

 self.t_vars = tf.trainable_variables()
 self.saver = tf.train.Saver()

Self-

recurrent

connection

Forget

gate

Memory

cell output

Memory

cell input

Input gate Output

gate

MEMORY

Self-

recurrent

connection

Forget

gate

Memory

cell output

Memory

cell input

Input gate Output

gate

6 N. BOYKO, A. IVANETS, M. BOSIK

Fig. 5. Prediction results

DEEP NEURAL NETWORKS

A neuron is an information-processing unit that is

fundamental to the operation of a neural network.

Fig. 6. Model of neuron

In mathematical terms:

 (2)

,

where x1, x2, …, xm are the input signals; wk1, wk2, …,

wkm are the weights of neuron k; bk is the bias; φ is the

activation function.

Multilayer perceptron is a class of feedforward

artificial neural network. The network consists of a set of

sensory units that constitute the input layer, one or more

hidden layers of computation nodes, and an output layer

of computed nodes.

Hidden neurons enable the network to learn complex

tasks by extracting progressively more meaningful

features from the input patterns.

The model of each neuron in the network unites a

nonlinear activation function. Activation function must be

smooth(differentiable everywhere). The two common

activation functions are hyperbolic tangent and the

logistic function. Alternative activation functions have

been proposed, including the rectifier and softplus

functions.

Fig. 7. Plot of the rectifier

The common method for training a neural network is

error back-propagation. Learning occurs in the perceptron

by changing connection weights after each piece of data is

processed, based on the amount of error in the output

compared to the expected result. Each layer of nodes

trains on a distinct set of features based on the previous

layer’s output. The further you advance into the neural

net, the more complex the features your nodes can

recognize, since they aggregate and

recombine features from the previous layer.

The network is fully connected if every

node in each layer of the network is

connected to every other node in the

adjacent forward layer. If some of the

communication links are missing from the

network, the network is partially connected.

MLPs are widely used for pattern

classification, recognition, prediction and

approximation. Therefore, one of the

problems deep learning solves best is in

processing and clustering the world’s raw,

unlabeled media, discerning similarities and

anomalies in data that no human has

organized in a relational database or ever

put a name to.

COMPARING ALGORITHMS

Deep neural network allow signals to transfer one

way only: from input to output. There are no feedback,

the output of any layer does not affect that same layer.

DNN takes a fixed size input and generates fixed-size

outputs. Feedforward neural networks are ideally suitable

for modeling relationships between a set of predictor or

input variables and one or more output variables.

Recurrent neural nets are neural networks that keep

state between input samples. They remember previous

input samples and use those to help classify the current

input sample. They are mostly useful when the order of

your data is important. Generally speaking, problems

related to time-series data (data with a timestamp on

them) are good candidates to be solved well with

recurrent neural nets. Also RNN can handle arbitrary

input/output lengths.

Unlike a traditional deep neural network, which uses

different weights at each layer, a RNN shares the same

weights across all steps. This reflects the fact that we are

performing the same task at each step, just with different

inputs. This greatly reduces the total number of

parameters we need to learn.

DNN and RNN have different models of neuron.

RNN use LSTM blocks, neurons that output influences

Synaptic

weights

Wk1

Wk1

Wk1

 Input

signa

ls

Bia

s

bk

Activation

function

Output

yk

x1

x2

xm

Summing

function

.

.

.

.

.

.

FORECASTING ECONOMIC AND FINANCIAL INDICATORS… 7

their input. DNN have an input layer of source nodes that

projects onto an output layer of neurons, but not vice

versa.

STOCK PRICE PREDICTION USING DNN

Deep learning model for predicting the S&P 500

index based on price 500 units per minute.

We need two cells in order to fit our model: X

contains the network's inputs (the stock prices of all S&P

500 constituents at time T = t) and Y the network's outputs

(the index value of the S&P 500 at time T = t + 1).

The model consists of four hidden layers. The first

layer contains 1024 neurons, slightly more than double

the size of the inputs. Subsequent hidden layers are half

the size of the previous layer, which means 512, 256 and

finally 128 neurons.

Cells (data) and variables (weights and biases) need

to be combined into a system of sequential matrix

multiplications.

The hidden layers of the network are transformed by

activation function — ReLU.

The optimizer takes care of the necessary

computations that are used to adapt the network’s weight

and bias variables during training. Here the Gradient

descent optimizer is used.
Placeholder
X = tf.placeholder(dtype=tf.float32, shape=[None, n_stocks])

Y = tf.placeholder(dtype=tf.float32, shape=[None])

Model architecture parameters

n_stocks = 500

n_neurons_1 = 1024
n_neurons_2 = 512

n_neurons_3 = 256

n_neurons_4 = 128
n_target = 1

Layer 1: Variables for hidden weights and biases
W_hidden_1 = tf.Variable(weight_initializer([n_stocks, n_neurons_1]))

bias_hidden_1 = tf.Variable(bias_initializer([n_neurons_1]))

Layer 2: Variables for hidden weights and biases
W_hidden_2 = tf.Variable(weight_initializer([n_neurons_1,

n_neurons_2]))

bias_hidden_2 = tf.Variable(bias_initializer([n_neurons_2]))
Layer 3: Variables for hidden weights and biases

W_hidden_3 = tf.Variable(weight_initializer([n_neurons_2,

n_neurons_3]))
bias_hidden_3 = tf.Variable(bias_initializer([n_neurons_3]))

Layer 4: Variables for hidden weights and biases

W_hidden_4 = tf.Variable(weight_initializer([n_neurons_3,
n_neurons_4]))

bias_hidden_4 = tf.Variable(bias_initializer([n_neurons_4]))

Output layer: Variables for output weights and biases

W_out = tf.Variable(weight_initializer([n_neurons_4, n_target]))
bias_out = tf.Variable(bias_initializer([n_target]))

Hidden layers

hidden_1 = tf.nn.relu(tf.add(tf.matmul(X, W_hidden_1), bias_hidden_1))
hidden_2 = tf.nn.relu(tf.add(tf.matmul(hidden_1, W_hidden_2),

bias_hidden_2))

hidden_3 = tf.nn.relu(tf.add(tf.matmul(hidden_2, W_hidden_3),
bias_hidden_3))

hidden_4 = tf.nn.relu(tf.add(tf.matmul(hidden_3, W_hidden_4),

bias_hidden_4))

Output layer (must be transposed)

out = tf.transpose(tf.add(tf.matmul(hidden_4, W_out), bias_out))
Cost function

mse = tf.reduce_mean(tf.squared_difference(out, Y))

Optimizer
learning_rate = 0.01

opt = tf.train.GradientDescentOptimizer(learning_rate).minimize(mse)

Initializers

sigma = 1
weight_initializer = tf.variance_scaling_initializer(mode="fan_avg",

distribution="uniform", scale=sigma)

bias_initializer = tf.zeros_initializer()
Make Session

net = tf.Session()
Run initializer

net.run(tf.global_variables_initializer())

Number of epochs and batch size
epochs = 10

batch_size = 256

for e in range(epochs):

 # Shuffle training data
 shuffle_indices = np.random.permutation(np.arange(len(y_train)))

 X_train = X_train[shuffle_indices]

 y_train = y_train[shuffle_indices]
 # Minibatch training

 for i in range(0, len(y_train) // batch_size):

 start = i * batch_size
 batch_x = X_train[start:start + batch_size]

 batch_y = y_train[start:start + batch_size]

 # Run optimizer with batch
 net.run(opt, feed_dict={X: batch_x, Y: batch_y})

Prediction

pred = net.run(out, feed_dict={X: X_test})
print(pred)

Print final MSE after Training

mse_final = net.run(mse, feed_dict={X: X_test, Y: y_test})
print(mse_final)

Fig. 8. Predicted results

CONCLUSIONS

Thanks to the constant advances in the field of the

Machine Learning and increases in computing power,

new horizons are opening for the scientists all over the

world. Existing machine learning algorithms already

found their place in today’s complex world. The most

common applications such as image recognition, language

modelling, state-of-the-art classification and decision

making systems are already making a huge impact on our

lives, and the power of their impact will only grow bigger,

as the amount of data collected every day increases.

Based on the results from the implemented pieces of

software we’ve seen a clear picture of what each kind of

the network is capable of, and how effective each of them

is. It has also been demonstrated with a good example that

the RNN-based or DNN-based built on LSTMs networks

work the best for the kind of problems we were solving,

8 N. BOYKO, A. IVANETS, M. BOSIK

as they provide a “memory” of all of the states and based

on those states make a better, more real-world-like,

predictions; while the ones that are based on the DNNs

with no internal LSTM layers produce more noisy and

less consistent results. Despite the good results produced

by the implementations in our experiments, one can’t be

too sure to fully rely on them without any side input from

the human; however one can use them as a great tool to

boost the efficiency and increase the profits in some sort

of the financial institution.

REFERENCES

1. Boyko N. 2016 Basic concepts of dynamic recurrent

neural networks development / N. Boyko, P.

Pobereyko // ECONTECHMOD : an international

quarterly journal on economics of technology and

modelling processes. – Lublin: Polish Academy of

Sciences, Vol. 5, № 2. – P. 63-68.

2. Leskovec J. 2014 Mining of massive datasets / J.

Leskovec, A. Rajaraman, J.D. Ullman. –

Massachusetts: Cambridge University Press,. – 470 р.

3. Mayer-Schoenberger V. 2013 A revolution that will

transform how we live, work, and think / V. Mayer-

Schoenberger, K. Cukier. – Boston New York,. – 230

р.

4. Boyko N. 2016 A look trough methods of

intellectual data analysis and their applying in

informational systems / N. Boyko // Computer

sciences and informatopn technologies CSIT 2016 :

Proceedings of XI International scientific conference

CSIT 2016 : proceedings. – Lviv: Publ ofv Lviv

Polytechnik. – P. 183-185.

5. Maass W. 2002 Real-time computing without stable

states: a new framework for neural computations

based on perturbations / W. Maass, T. Natschger, H.

Markram / Neural Computation : proceedings. –

Switzerland: Institute for Theoretical Computer

Science, Vol. 11. – P. 2531–2560.

6. Schrauwen B., Verstraeten D., Campenhout J.V.
2007 An overview of reservoir computing theory,

applications and implementations / B. Schrauwen, D.

Verstraeten, J.V. Campenhout // Proc. of the 15th

European Symp. on Artificial Neural Networks :

proceedings. – Belgium: Bruges,. P. 471–482.

7. Coombes S. 2005 Waves, bumps, and patterns in

neural field theories / S. Coombes // Biological

Cybernetics : proceedings. – Nottingham: University

of Nottingham, Vol. 93, № 2. – P. 91–108.

8. Antonopoulos N. 2010 Cloud Computing:

Principles, Systems and Applications / Nick

Antonopoulos, Lee Gillam. — L.: Springer. – 379 p.

9. Shyshkin V.M. 2011 Safety of clod computig –

problems and possibilities of risk-analisys[Tekst] /

V.M. Shyshkin// International scientific conference

“Automated management systems and modern

information technologies” – Tbilisi: Publication

House “Technical University”. – P. 142 (In Russian).

10. Nandkishor G. 2012 Use of cloud computing in

library and information science field / Nandkishor

Gosavi, Seetal S. Shinde, Bhagyashree Dhakulkar //

International Journal of Digital Library Services. –

Vol. 2, iss. 3. – P. 51–60. – Mode of access :

http://www.ijodls.in/uploads/3/6/0/3/3603729/vol._2_

july_-_sept._2012_part-2.pdf.

11. Sangeeta N. 2013 Dhamdhere. Cloud Computing

and Virtualization / Sangeeta N. Dhamdhere. – 385 p.

12. Monirul Islam M. 2013 Necessity of cloud

computing for digital libraries: Bangladesh

perspective / M. Monirul Islam // International

Conference on Digital Libraries (ICDL): Vision

2020: Looking Back 10 Years and Forging New

Frontiers – P. 513–524.

13. Avetysov M. A. Cloud computing for libraries/ M.

A. Avetysov. – Access mode: http://www.aselibrary.

ru/blogs/archives/997/.

14. Mell P. 2011 The NIST Definition of Cloud

Computing : Recommendations of the National

Institute of Standards and Technology / Peter Mell,

Timothy Grance. –. Access mode:

http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecia

lpublication800-145.pdf.

15. Microsoft support cloud computing». – Access

mode: http://www.dw.com/uk/microsoft-531253 (in

Ukrainian).

16. Hewitt C. 2008 ORGs for Scalable, Robust,

Privacy-Friendly Client Cloud Computing / Carl

Hewitt // IEEE Internet Computing, Vol. 12, N 5, Р.

96–99.

17. Foster I. 2001 The Anatomy of the Grid: Enabling

Scalable Virtual Organizations / I. Foster //

International Journal of High Performance

Computing Applications, Vol. 15, N 3, P. 200–222.

18. Matov O.Ia. 2004 Information technology and the

development of GRID systems in high-performance,

globally-distributed computing infrastructures

corporate cooperation / O.Ia. Matov // Registration,

storage and processing of data,, V. 6, № 1, P. 85–98.

19. Graham S. 2005 Building Web Services with Java:

Making Sense of XML, SOAP, WSDL, and UDDI,

SAMS / S. Graham. – 816 p.

20. Foster I. 2008 Cloud computing and grid computing

360-degree compared / I. Foster, Y. Zhao, I. Raicu, S.

Lu // Grid Computing Environments Workshop,

2008, GCE'08., P. 1-10.

http://www.aselibrary/
http://www.dw.com/uk/microsoft-531253

