PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis of dispersion-compensating triangular lattice index-guiding photonic crystal fibres using the directed tabu search method

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, triangular lattice index-guiding photonic crystal fibres (PCFs) are synthesized to compensate the chromatic dispersion of a single mode fibre (SMF-28) for an 80 km optical link operating at 1.55 µm, by using a directed tabu search algorithm. Hole-to-hole distance, circular air-hole diameter, solid-core diameter, ring number and PCF length parameters are optimized for this purpose. Three synthesized PCFs with different physical parameters are compared in terms of their objective functions values, residual dispersions, compensation ratios and confinement losses.
Twórcy
autor
  • Laboratory of Telecommunications, Faculty of Technology, Aboubekr Belkaid University, Chetouane, Tlemcen, Algeria
Bibliografia
  • [1] M. Sumetsky, B. J. Eggleton, Fibre Bragg gratings for dispersion compensation in optical communication systems, J. Opt. Fibre Commun. Res. 2 (2005) 256-278.
  • [2] Z. Zang, All-optical switching in Sagnac loop mirror containing an ytterbium-doped fibre and fibre Bragg grating, Appl. Opt. 52 (2013) 5701-5706.
  • [3] Z. Zang, Y. Zhang, Analysis of optical switching in a Yb3+ doped fibre Bragg grating by using self-phase modulation and cross-phase modulation, Appl. Opt. 51 (2012) 3424-3430.
  • [4] Z. Zang, Y. Zhang, Low-switching power (<45 mW) optical bistability based on optical nonlinearity of ytterbium-doped fibre with a fibre Bragg grating pair, J. Mod. Opt. 59 (2012) 161-165.
  • [5] L. Grüner-Nielsen, et al., Dispersion-compensating fibres, J. Lightw. Technol. 23 (2005) 3566.
  • [6] P. Palai, A dispersion flattening dispersion compensating fibre design for broadband dispersion compensation, Fiber Integr. Opt. 20 (2001) 21-27.
  • [7] Y. Ni, et al., Dual-core photonic crystal fibre for dispersion compensation, IEEE Photon. Technol. Lett. 16 (2004) 1516-1518.
  • [8] Y. Liu, et al., A novel multi-waveband dispersion compensating fibre based on hybrid photonic crystal fibre, Optoelectron. Lett. 9 (2013) 53-56.
  • [9] M. Mejbaul Haque, et al., Design and characterization of single mode circular photonic crystal fibre for broadband dispersion compensation, Optik - Int. J. Light Electron Opt. 125 (2014) 2608-2611.
  • [10] J. Broeng, D. Mogilevstev, S. E. Barkou, A. Bjarklev, Photonic crystal fibres: a new class of optical waveguides, Opt. Fibre Technol. 5 (1999) 305-330.
  • [11] T A. Birks, J. C. Knight, B. J. Mangan, P. St. J. Russell, Photonic crystal fibres: an endless variety, IEICE Trans. Electron. E84-C (2001) 585-592.
  • [12] J. C. Knight, T. A. Birks, P. St. J. Russell, D. M. Atkin, All-silica single-mode optical fibre with photonic crystal cladding, Opt. Lett. 21 (1996) 1547-1549.
  • [13] T. A. Birks, J. C. Knight, P. St. J. Russell, Endlessly single-mode photonic crystal fibre, Opt. Lett. 22 (1997) 961-963.
  • [14] J. C. Knight, J. Broeng, T. A. Birks, P. St. J. Russell, Photonic band gap guidance in optical fibre, Science 282 (1998) 1476-1478.
  • [15] R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, Single mode photonic band gap guidance of light in air, Science 285 (1999) 1537-1539.
  • [16] R. R. Musin, A. M. Zheltikov, Designing dispersion-compensating photonic-crystal fibres using a genetic algorithm, Opt. Commun. 281 (2008) 567-572.
  • [17] F. Poli, A. Cucinotta, S. Selleri, Photonic Crystal Fibres: Properties and Applications, Springer, The Netherlands, 2007.
  • [18] F. Karim, O. Seddiki, Synthesis of chirped apodized fibre Bragg grating parameters using Direct Tabu Search algorithm: application to the determination of thermo-optic and thermal expansion coefficients, Opt. Commun. 283 (2010) 2109-2116.
  • [19] F. Karim, O. Seddiki, Direct tabu search algorithm for the fibre Bragg grating distributed strain sensing, J. Opt. 12 (2010) 095401.
  • [20] A. Hedar, M. Fukushima, Tabu Search directed by direct search methods for nonlinear global optimization, Eur. J. Oper. Res. 170 (2006) 329-349.
  • [21] K. Okamoto, Fundamentals of Optical Waveguides, Academic Press, Elsevier, USA, 2006.
  • [22] B. T. Kuhlmey, R. C. McPhedran, C. M. de Sterke, P. A. Robinson, G. Renversez, D. Maystre, Microstructured optical fibres: where’s the edge? Opt. Express 10 (2002) 1285-1290.
  • [23] N. A. Mortensen, J. R. Folkenberg, M. D. Nielsen, K. P. Hansen, Modal cut-off and the V parameter in photonic crystal fibres, Opt. Lett. 28 (2003) 1879-1881.
  • [24] M. D. Nielsen, J. R. Folkenberg, N. A. Mortensen, A. Bjarklev, Bandwidth comparison of photonic crystal fibres and conventional single-mode fibres, Opt. Express 12 (2004) 430-435.
  • [25] K. Saitoh, M. Koshiba, Chromatic dispersion control in photonic crystal fibres: application to ultra-flattened dispersion, Opt. Express 11 (2003) 843-852.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8eaab8ec-1f9f-4221-b0b8-47b19009a810
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.