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Additive manufacturing methods, commonly known as 3D printing, allow more sophistica-
ted designs to be created. Willingly designed substructures incorporated into the solid open
up new possibilities for uncommon macroscopic deformation behavior. Such a man-made
structure is also referred to as a metamaterial. A detailed simulation of a polymer-based
metamaterial is challenging but accurately possible by means of the theory of elasticity. In
this study, we present experimental investigations of a metamaterial composed of panto-
graphic substructures of different internal geometry. The pantographic structures show an
unexpected type of deformation, which can be modeled via elasticity with the aid of direct
numerical simulation by using the Finite Element (FE) method. In other words, a detailed
mesh is generated involving the substructure. The metamaterial is additively manufactured
out of a common polymer showing nonlinear elastic deformation and, therefore, hyperelastic
material models are used. Specifically, analytical solutions of a circular cylinder are exami-
ned and compared in the case of extension and torsion in order to comprehend the effects of
the coefficients inherent to the energy function of the hyperelastic model. Finally, FE com-
putations of pantographic structures are performed and compared with the experimental
measurements.
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1. Introduction

Additive Manufacturing (AM) provides an advanced manufacturing technique that allows one
to fabricate sophisticated geometry prototypes at a rapid pace and relatively low cost, which
makes the fabrication of complex metamaterials possible. Metamaterials are materials which
are architectured from so-called “microscopic” elements; by tailoring these micro-elementary
constituents or substructures, the macroscopic deformation behavior can be modified completely.
Hence the design of a functionalized material for specific purposes leading to novel types of
deformation patterns becomes possible (Del Vescovo and Giorgio, 2014; Barchiesi et al., 2018b).
As it is commonly known, a material in continuum mechanics is scale-invariant, i.e., it responds to
an applied force in the same way on every length scale. However, by constructing a metamaterial
with a substructure on the micrometer length scale, we observe different deformation responses
than can be expected on the macro-scale if no substructure is present. In order to simulate the
deformation phenomenon on the macro-scale, we can introduce new parameters allowing the
material model to fully grasp the new pattern. This method is known under different names,
for example, micropolar medium, strain gradient theory, generalized mechanics, couple stress
material (Mindlin and Eshel, 1968; Toupin, 1964; Lam et al., 2003; Altenbach and Eremeyev,
2012), for historical remarks see dell’Isola et al. (2014), and for a recent review see Thai et al.
(2017). It is important to emphasize that the theory of elasticity is valid and accurate on the
micro-scale. The introduction of new structure-related parameters are necessary as a part of a
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homogenization procedure resulting in including higher-order terms in the formulation. As it was
mentioned earlier, it is not clear yet how these structure-related parameters can be determined.
The pantographic structure shown in Fig. 1, composed of two orthogonal arrays of beams

connected by internal cylinders called pivots, is a metamaterial, which has been investigated
by the aforementioned generalized method (dell’Isola et al., 2016). Interestingly, pantographic
structures can be deformed without damage up to large deformation and still remain in the
elastic reversible range (dell’Isola et al., 2015, 2016). Recently, simple shear and torsion tests
(Misra et al., 2018) applied to 3D printed pantographic structures with different combinations
of internal geometric parameters of substructures have been conducted and showed highly non-
linear responses as well as some uncommon macroscopic deformations (Barchiesi et al., 2018a;
Ganzosch et al., 2016). The macroscopic behavior of the metamaterial is affected by underlying
deformation mechanisms related to geometry and various sizes contained within the substructu-
res. For a rigorous understanding of the mechanisms and effects of the substructural properties
on the overall behavior of these material systems, we aim at a direct numerical simulation by
using the Finite Element Method (FEM), for which an appropriate constitutive law is necessa-
ry. The classical Hooke’s law assumes a linear stress-strain relationship, which is not accurate
enough for the pantographic structures fabricated by polyamide materials, because they are ca-
pable of undergoing nonlinear elastic deformation. Therefore, a nonlinear elastic (hyperelastic)
constitutive law is needed.

Fig. 1. Topology and geometry of pantographic structures

Over the years, a number of hyperelastic models have been proposed that use specific strain
energy density functions for capturing the behavior of various rubber-like materials (Holzapfel,
2000), so that mathematical formulations differ from one to another. But ultimately, it is not
only the mathematical form that is important, but also its numerical values representing the
behavior of the material. Numerical calculations for rubber-like materials are often troublesome
due to the lack of a suitable model capturing the material behavior at large deformations. In the
work of Yang et al. (2018), a series of hyperelastic material models were studied and calibrated.
The computations also show that the nonlinear material model is in good agreement with expe-
rimental data. In this work, we make use of hyperelastic models whose built-in coefficients were
calibrated in (Yang et al., 2018) and investigate and compare their performance with regard
to different combinations of internal geometry sizes of substructures under shear and torsion
experiments of pantographic structures.
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The metamaterial under a mono-axial shear test as well as a torsion test will be described in
Section 2. The hyperelastic model will also be described, and the analytical solution of a cylinder
under extension and torsion will be investigated. FEM computations are obtained by implemen-
ting hyperelastic models with the aid of open-source codes developed under the FEniCS project,
see (Logg et al., 2011). A comparison and discussion of the experiments and computations are
presented in Section 5.

2. Experimental setup of the shear and torsion tests

2.1. Loading devices

The simple shear experiments shown in Fig. 2 will be revisited here. For more details, the
reader is referred to Ganzosch et al. (2016). The experiment was performed in displacement-
-controlled manner by using an MTS TYTRON-250 system where a load cell capable to record
forces in the range of ±250N was used to measure the reaction force. A displacement-rate
(15mm/min) was defined for shearing the specimen by means of a DC-linear motor where an
air-film-bearing realized almost frictionless movement. In order to reduce the influences of gravity
the system was arranged horizontally. The lower part of the sample was fixed to a metal slide
situated on the left hand side, cf. Fig. 2. The upper part was connected to the right hand side
of a metal slide and driven in parallel to the lower side up to a distance of ∆ℓmax = 70mm.
The maximum prescribed displacement was of the same size as the transverse length of the
sample. Hence the specimen was subjected to large deformations. The displacement-controlled
motion of the upper part was defined by a constant displacement-rate of about 0.5mm in a
linear motion sequence. The machine automatically stopped when the maximum displacement
∆ℓmax was reached.

Fig. 2. Pantographic structure subjected to mono-axial shear

The torsion experiment for pantographic structures is illustrated in Fig. 3 and will be briefly
discussed in what follows. More details can be found in (Ganzosch et al., 2018). The experiment
was conducted using a Zwick-Z010 system equipped with a load cell (Zwick-Serie) capable of
measuring and recording the axial reaction force. One side of the sample is fixed, the other side is
rotated by 1◦/min up to 180◦. Because of the large resulting rotation angle, the sample is under
large deformation. It should be noted that the digital image correlation technique (Brodecki et
al., 2018) can be used to investigate the peculiar out of plane deformations. This, however, is
out of the scope of this paper.
Three pantographic structures shown in Fig. 4 characterized by four different internal geo-

metrical parameters but equal macroscopic dimensions of 210mm×70mm were printed layer by
layer from polyamide powders by using a laser sintering technique. Table 1 contains dimensions
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Fig. 3. Pantographic structures under torsion

Fig. 4. Samples of pantographic structures made up of polyamide by 3D printing

of the beam width w, height hb, pivot radius r and height hp. The beam dimensions were varied
in these specimens with the aim to understand the mechanisms and effects of the substructure
properties on the overall behavior of these metamaterials. All of the samples show large non-
linear behavior (more details will be shown in Section 5), exhibit no damage, and the large
deformations remain reversible. Therefore, we may say that the elastic behavior dominates in
the experiments. The influence of viscoelastic behavior occurring during the experiments seems
non-negligible at the first glance, however, its role will be investigated in a future study; for
example cyclic loading experiments can be conceived (Kowalewski et al., 2014). Here we expect,
by studying and selecting appropriate elastic material models, that one of the constitutive laws
is able to capture the peculiar properties of the pantographic structures.
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Table 1. Geometrical characteristics of the microstructure

Type w [mm] hb [mm] r [mm] hp [mm]

A 1.60 1.60 0.45 1.00

B 1.60 1.00 0.45 1.00

C 1.00 1.00 0.45 1.00

3. Hyperelastic model

Following the Lagrangian description of kinematics of continua, the position of a material partic-
le is denoted by X in the reference configuration. Moreover, the position of the material particle
is given by x in the current configuration due to a certain mechanical loading. According to
the notation of classical continuum mechanics, the deformation gradient tensor F = ∂x/∂X is
introduced and, subsequently, the right and left Cauchy-Green strain tensors C and B, respec-
tively, can be obtained C = FTF and B = FFT. Note that C and B have the same eigenvalues
and principal invariants. The principal invariants represented by I1, I2, I3 of the right and left
Cauchy-Green strain tensor are defined by (Holzapfel, 2000)

I1 = tr (C) = tr (B) I2 =
1

2

[
tr (C))2 − tr (C2)

]
=
1

2

[
tr (B))2 − tr (B2)

]

I3 = det(C) = det(B)
(3.1)

We assume incompressibility leading to

I3 = 1 (3.2)

In this paper, three invariant based hyperelastic models have been selected, namely the Neo-
-Hookean model, the Isihara model and the Yeoh model, whose strain energy density functions
are listed in Table 2. The Neo-Hookean model is the simplest model and only depends on the

Table 2. Strain energy density function for hyperelastic models

Model Equation

Neo-Hookean 1
2µ(I1 − 3)

Isihara C10(I1 − 3) + C01(I2 − 3) + C20(I1 − 3)2
Yeoh C10(I1 − 3) + C20(I1 − 3)2 + C30(I1 − 3)3

first invariant I1. It is characterized by one parameter only, the shear modulus µ. The Yeoh
model, which also depends only on the first invariant I1, contains three terms with three mate-
rial parameters. It has been demonstrated to fit various modes of deformations using the data
obtained from uniaxial tests alone (Chen and Wu, 1997; Lawlor et al., 2011). Furthermore, the
Isihara model, which is a polynomial function of I1 and I2, has been selected here. From the
mathematical point of view, the Isihara model shows similarities to the Yeoh model. They both
comprise the linear and quadratic part of I1 − 3; the major difference is that the Isihara model
contains the I2 − 3 part, whereas the Yeoh model does not. The values of inherent material
parameters shown in Table 3 are used from Yang et al. (2018). Note that all parameters were
calibrated from an axial tensile test. In view of the differences of the mathematical equations
of these hyperelastic models, it is even more difficult to interpret the physical meaning of each
material parameter in the constitutive laws. These subtle differences may lead to discrepancies
in values when predicting the behavior of pantographic structures. In order to understand the
possible distinctions, analytical solutions of a cylinder under extension and torsion, shown in
Fig. 5, are performed below, for all of the three aforementioned hyperelastic models. Actually,
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Table 3. Coefficients of the hyperelastic models

Model Coefficients

Neo-Hookean 1
2µ = 83.3MPa

Isihara C10 = −929MPa, C01 = 1013MPa, C20 = 648MPa
Yeoh C10 = 73MPa, C20 = −2653MPa, C30 = 64945MPa

such analytical solutions were studied in the poineering work of Rivlin (1948). For the conve-
nience of the reader, the pertinent equations are repeated below for a general strain energy
function W .

Fig. 5. Schematic of a cylinder under pure stretch (left) and pure torsion (right)

Consider a homogeneous cylinder made of an incompressible hyperelastic material having
length L with a circular cross-section with the initial radius A. One end of the cylinder is fixed
while the other side is subjected to uniaxial displacement and to rotation. Because of the axial
symmetry, cylindrical polar coordinates are used with (R,Θ,Z) in the reference configurations
and (r, θ, z) in the current configurations, respectively. The deformation is expressed by

r = αR θ = Θ + τλZ z = λZ (3.3)

where α is the ratio between the deformed and the initial radius; λ is the ratio of the deformed
and the initial length; τ is the angle of twist per unit length in the current configuration. The
deformation gradient F can be expressed by

F =




α 0 0
0 α αRτλ
0 0 λ



 (3.4)

Due to the incompressibility assumption, it follows immediately that

J = det(F) = α2λ = 1 (3.5)

which implies α = 1/
√
λ. Then, the left Cauchy-Green tensor B reads

B =




λ−1 0 0

0 λ−1 + λR2τ2
√
λ3Rτ

0
√
λ3Rτ λ2



 B−1 =




λ 0 0

0 λ −
√
λRτ

0 −
√
λRτ λ−2 +R2τ2



 (3.6)

The invariants of the left Cauchy-Green tensor B are according to Eq. (3.6)

I1 = tr (B) = λ
2 + 2λ−1 + λR2τ2 I3 = det(B) = 1

I2 =
1

2

[
( tr (B))2 − tr (B2)

]
= 2λ+ λ−2 +R2τ2

(3.7)
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The Cauchy stresses read (Rivlin, 1948; Bahreman and Darijani, 2015)

σθθ =

A∫

R

−2λτ2R
∂W

∂I1
dR+ 2λτ2R2

∂W

∂I1

σzz =

A∫

R

−2λτ2R
∂W

∂I1
dR+ 2(λ2 − λ−1)

∂W

∂I1
+ 2(λ− λ−2 − τ2R2)

∂W

∂I2

σθz = 2
√
λ3τR

∂W

∂I1
+ 2
√
λτR
∂W

∂I2

(3.8)

Therefore, the axial force N required for maintaining this deformation can be calculated as

N = 2π

A∫

0

σzzr dr (3.9)

Substitute the strain energy density functions in Table 2 into Eq. (3.9) by considering Eq. (3.8)

NNeo-Hookean = πA
2µ
(
λ− λ−2 −

τ2A2

4

)

NYeoh = 2πA
2(λ− λ−2)

[
2C10 + 2C20(λ

2 + 2λ−1 − 3) +A2C20τ2λ

+ 3C30(λ
2 + 2λ−1 − 3)2 +C30A4λ2τ4 + 3C30A2λτ2(λ2 + 2λ−1 − 3)

]

− πA4τ2
[1
2
C10 + 2C20(λ

2 + 2λ−1 − 3) +
2

3
A2C20τ

2λ+
3

2
C30(λ

2 + 2λ−1 − 3)2

+ 2C30A
2λτ2(λ2 + 2λ−1 − 3) +

3

4
C30A

4λ2τ4
]

NIsihara = 2πA
2(λ− λ−2)

[
2C10 + 2C20(λ

2 + 2λ−1 − 3) +A2C20τ2λ+A2λ−1C01
]

− πA4τ2
[1
2
C10 + 2C20(λ

2 + 2λ−1 − 3) +
2

3
A2C20τ

2λ+ λ−1C01
]

(3.10)

For a pure extension test, τ = 0 the axial forces for the hyperelastic models read

NNeo-Hookean = π(λ− λ−2)A2µ

NYeoh = 2π(λ− λ−2)A2
[
C10 + 2C20(λ

2 + 2λ−1 − 3) + 3C30(λ2 + 2λ−1 − 3)2
]

NIsihara = 2π(λ− λ−2)A2
[
C10 + 2C20(λ

2 + 2λ−1 − 3) + λ−1C01
]

(3.11)

For a pure torsion test, λ = 1, the axial forces read

NNeo-Hookean = −πτ2A4
µ

4

NYeoh = −πτ2A4
(C10
2
+
2

3
C20τ

2A2 +
3

4
C30τ

4A4
)

NIsihara = −πτ2A4
(C10
2
+
2

3
C20τ

2A2 +C01
)

(3.12)

Figure 6 shows the solution to Eqs. (3.10)-(3.12) for a cylinder with the initial radius
A = 1mm and length L = 10mm. As expected, the different models show different nonlinear re-
sponses. In the pure extension case shown in Fig. 6a, the Yeoh and Isihara models, although their
mathematical formulations differ, show almost the same behavior. This is because the material
parameters of them were determined by the same axial tensile test (Yang et al., 2018). In the
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pure torsion case indicated by Fig. 6d, all models show a negative deformation response, which
means the cylinder tends to elongate when twisted. The Neo-Hookean and the Yeoh model show
roughly the same responses, while the Isihara model shows much higher reaction forces than the
other two models. From the mathematical viewpoint, as shown in Eqs. (3.12), the Neo-Hookean
and the Yeoh model contain the first invariant only. The coefficient C01 of the second invariant I2
in the Isihara model dominates in the torsion case, resulting in large discrepancies. Note that in
the torsion case, the twisting deformation is mainly determined by the second invariant. In order

Fig. 6. Axial reaction forces under extension and torsion for a solid cylinder of circular cross-section
with the initial radius A = 1mm and length L = 10mm. Axial reaction forces under: (a) pure
extension, (b) extension for the cylinder firstly twisted by 30◦, (c) extension for the cylinder firstly
twisted by 60◦, (d) pure torsion, (e) torsion for the cylinder firstly stretched by 1.03, (f) torsion for the

cylinder firstly stretched by 1.06

to quantify the variances in the reaction force calculations by using further different constitutive
laws, the cylinder under both stretch and torsion is considered. Figures 6b and 6c illustrate
the axial reaction responses of the cylinder that is first twisted by 30◦ and 60◦ and afterwards
subjected to stretch. All of the hyperelastic models lead to a monotonic increase. Figures 6e
and 6f describe the axial reaction responses of the cylinder, first stretched by 1.03 and 1.06 and
afterwards subjected to torsion. Despite the fact that the material coefficients were calibrated
by the same experimental data, the adopted constitutive laws showed a large discrepancy. We
may say that the difference of the responses of these hyperelastic models could be reduced by
calibrations using experimental data from a range of experimental tests (uniaxial, biaxial, and
planar tension). However, due to the apparent diversity of mathematical forms, it is difficult
to eliminate these differences. Because of the great influences of the constitutive laws on the
material response, different constitutive laws will be used in the next Section for simulation
and assessment of the experiments presented in Section 2. It is expected that some of these
hyperelastic models will show a good agreement with the experimental results.

4. Direct numerical simulation

For a domain Ω ⊂ R
3 under Dirichlet boundary conditions, where the displacement is prescribed,

or under Neumann boundary conditions, where the traction vector t̂i is prescribed, we assume
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that the inertial forces as well as the weight are negligible. After a variational formulation, we
obtain the weak form (Abali et al., 2017)

∓ =
∫

Ω

∂w

∂ui,j
δui,j dV −

∫

∂Ω

t̂iδui dA (4.1)

The latter integral form vanishes, ∓ = 0, in the case of correct displacements u. However, it is
nonlinear in the displacements so that for finding the solution we need to linearize it by using
the Newton-Raphson formalism. The solution is found in an incremental manner

u := u+∆u (4.2)

where the numerical value of u is overwritten in each increment by u+∆u. By using standard
argumentation for linearization, we obtain

∓+ J ·∆u = 0 (4.3)

with the Jacobian J = ∂∓/∂u and the Gateaux derivative

J ·∆u = lim
ε→0

d

dε
∓(u+ ε∆u) (4.4)

Fig. 7. Boundary conditions and the generated mesh for calculations

The variational equations above are solved using Python programming language and by
exploiting FEniCS. The CAD models of the pantographic samples were created on the open
source platform SALOME 7.0, and FEM discretizations of the CAD models were realized by the
mesh generator NetGen built in SALOME 7.0. FEniCS then assembled the discretized system of
FEM equations. As shown in Fig. 7, tetrahedron elements are used to discretize the CAD model,
and in order to ensure smoothness and accuracy of the deformation field, Lagrange elements with
quadratic basis functions (P2 elements) are used to approximate the solution. One side of the
surfaces of the pantographic structure are fixed, namely, three translational degrees of freedom
are constrained. The other side surfaces are subjected to prescribed displacements from 0 to
70mm with a time step of 1mm or a rotation from 0◦ to 180◦ with a time step 1◦. It should
be noted that the simulation is quasi-static and the solution from the previous step is reused
as the initial value for the next step calculation. The reaction force in the Y -direction (shear
test) or in the X-direction (torsion test) of the side with the applied prescribed displacements or
rotations are calculated by summing up the nodal force attached to the surface. Note that a fine
mesh is needed for a reasonable approximation of the pantographic structure. After standard
h-convergence analysis, which means increasing the degrees of freedom (DOFs) by decreasing the
mesh size of each tetrahedron element, 5 million DOFs were used for the simulations discussed
in the next Section.
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5. Comparison of computations with experiments

Numerical simulations for the experiments undertaken in Section 2 were performed as shown
in Fig. 8. It should be noted that FEniCS is able to conduct calculations involving such huge
displacements. Therefore, comparison becomes possible by using the measured reaction force
as the prescribed displacement is applied. All computational results are summarized in Figs. 9
and 10. Simulations based on the physically linear and geometrically nonlinear St. Venant-
Kirchhoff model were also implemented and used as the reference model to be compared with
the experiments and other hyperelastic models.

Fig. 8. Simulation results for shear and torsion of the pantographic structure

Fig. 9. Reaction force in the displacement controlled shear experiment: experiments versus numerical
simulations

Figures 9 and 10 give the results for shear tests and torsion tests, the black dash lines show
the experimental reaction forces in the Y -direction versus the shearing displacement, and the
longitudinal axial reaction forces (X-direction) versus the twisting angle, respectively. Obviously,
when varying the internal geometric parameters, the samples show quite different nonlinear
behavior, and a small variation of the micro-dimensions leads to a remarkable change in the
macro-behavior. It is can be seen from Figs. 9 and 10 that, as expected, the linear St. Venant-
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Fig. 10. Reaction force in the rotation controlled torsion experiment: experiments versus numerical
simulations

-Kirchhoff model (linear) and other hyperelastic models show good consistency. They all fit the
experimental results well in the initial stage. The Neo-Hookean model generates the same result
as the linear St. Venant-Kirchhoff model, although their mathematical functions of strain energy
differ.

In the shear tests, each sample was tested three times and the results are denoted by the black
dash line together with an error bar indicating the error or uncertainty in the measurements. The
Isihara model and the Yeoh model show a better match with the experiments than the linear and
the Neo-Hookean model. The Yeoh model shows an even better match to the experiments up to
45mm (sample A), 50mm (sample B), 70mm (sample C) of the prescribed displacements. The
difference between the Isihara model and Yeoh model results from their different mathematical
formulations, as discussed in Section 3. The material parameters were evaluated by a mono-
-axial tensile test, thus we failed to identify accurately the material coefficients responsible for
shearing deformation, mainly given by I2. The reason why the Yeoh model fits the experiment
better in sample C than in A and B lies in the deformation mechanisms of the pantographic
substructure and their underlying energetic contributions. Actually, the deformation energies
of pantographic structures mainly consist of three parts (Giorgio et al., 2017), the stretching
deformations of the beams, their bending deformations, and the shear distortion related to
the variation of the angle between the beams when the pivots are twisted. The responses of
the pantographic structures are affected by the relation between the energies associated with
the different deformation modes, and these deformation energies depend on the geometrical
parameters of the structure shown in Table 1. The three kinds of deformation mechanisms
compete during the whole experiments. In the case of sample A and B, the beams mainly resist
stretching in the early stages, in other words, the stretching energy of the beams appears to be
dominant. With increasing the applied displacements, the beams bend heavily, which also leads
to relative rotation of the pivots resulting in the shearing energy. The energies from the shearing
of the pivots and the bending of the beams can no loner be ignored. However, the Yeoh model
does not incorporate the second invariant, mainly accounting for shearing deformation. Thus the
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Yeoh model fails to reproduce the responses of the overall pantographic structures accurately and
quantitatively. As a consequence, a deviation of the Yeoh model and experimental measurements
appears. Consider the case of sample C, which is composed of the softest beams when compared
to the other samples; because the torsional stiffness of the short pivots is relatively high the
rotation between different beams is suppressed and the beams bend easily. However, due to a
relatively small length of the beam cross-section sizes, the torsional energy and the bending
energy are negligible when compared to the energy coming from the stretching of beams. In
such a case, the stretching energy is dominant, and the Yeoh model shows a good match with
the measurements.

In the torsion tests, the data were just measured once. Some unavoidable errors could exist
due to machine compliance of the mounting device as well as the manufacturing-process of
the specimen. Indeed, during the twisting of the specimen, the beams stretched, warped and
twisted into helical shape resulting in the shear of the pivots, and the whole structures tended to
contract by the external twisting which led to reaction forces in the axial direction (X-direction
as shown in Fig. 8). In the case of stiffest beams (sample A), since the beams tend to stretch with
the twisting of the whole structures in the initial stage, the Yeoh model is able to predict the
responses of the pantographic structure up tp 60 degrees. After that bending, twisting energies
of the beams and shearing energies of the pivots show up, and this causes deviation of the Yeoh
model. In the intermediate case (sample B), the behavior is more complex since the energies from
stretching, bending and twisting of the beams as well as the shearing of the pivots coexist during
the whole experiment. In the Yeoh model, although showing the same variation tendency, they
are smaller than in the experimental curve, especially after rotation of 25 degrees. In the case
of the softest beams (sample C), similar to the shear tests, the stretching energies of the beams
dominate, thus the Yeoh model shows a good agreement with the experiments. It is should
be noted that a combination of different tests would result in the Isihara model parameters
matching the experiment better, since the Isihara model contains the second invariant and has
the ability to account for the deformation energies coming from stretching, bending, shearing as
well as twisting.

6. Conclusions

In this paper, the deformation behavior of pantographic structures with different internal geome-
try parameters were investigated. Shear and torsion experiments for the pantographic structures
were outlined and computational modeling was performed by using hyperelastic models under
the open-source platform FEniCS. For a better understanding of the deformation responses of
the hyperelastic models, analytical solutions for a cylinder under extension and torsion were pre-
sented. The comparison between the numerical and the experimental results for pantographic
structures were carried by using reaction forces and displacements. The results showed that the
linear St. Venant-Kirchhoff model and the Neo-Hookean model provided a good match with the
experiments under small deformations for all of the three samples. On the other hand, the Yeoh
model, whose coefficients were simply calibrated by a uniaxial test, could predict the response of
the pantographic structure quantitatively under the condition that the stretching energy of the
beams dominated, resulting from soft beams and stiff pivots. When the bending and shearing
deformation energies were not negligible, other models, for example the Isihara model, were
required, where more experiments, such as multi-axial tests, pure shear test, etc., were needed
to calibrate its coefficients further. We conclude by saying that the study of the responses at
microscopic length scale could lead to a possible explanation of an unconventional macroscopic
material response.
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