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Abstract  

The main concern of this paper are thin rectangular plates with dense system of the ribs in two directions. The 
aim of the analysis is the examination of the impact of different shape functions in tolerance modeling on 

natural vibrations of the plates. 

The plate is made of two different materials, both for matrix and ribs. The thickness of the plate is comparable 
to the width of the ribs. This provides a powerful tool for getting a desirable frequency of natural vibrations of 

the plate. The tolerance averaging approach is the base for the formulation of averaged model equations. The 

most accurate readings presenting this method are described in Wozniak et al. [1]. 
By application of the tolerance averaging technique to the known differential equations of considered plates, 

the averaged equations of the tolerance model have been derived. The general results of the contribution are 

illustrated using the analysis of natural vibrations. The effect of different shape functions on free vibration 
frequencies is examined. 
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1. Introduction 

The object of the contribution is thin composite plate with dense system of the ribs. The 

aim of the analysis is the diagnosis of the impact of different shape functions in tolerance 

modeling on natural vibrations of the plates.  

 

Figure 1. Composite plate at microscopic level and at macroscopic level 

The space between the ribs is filled with a homogeneous matrix material (Figure 1). 

The analogous plate was examined in the paper [2]. The period 21lll =  of 

heterogeneity is presumed to be sufficiently small versus the measure of the midplane of 

the plate. Simultaneously, it is assumed that the microstructure length parameter l  is 

appropriately small in contrast with the minimum characteristic length dimension of the 
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plate. The size of the microstructure l  is comparable with the thickness of the plate h  

( lh @ ) (Figure 2). The differential equations of this kind of the plates have 

discontinuous and rapidly oscillating coefficients. The applications of those equations to 

engineering problems is not the most efficient tool. Thus, an averaged model has been 

proposed in which material properties are represented by functional but smooth effective 

stiffnesses. 

 

Figure 2. Detailed geometry of the plate 

Analogous plate has been described in the paper [3] where it has been considered the 

influence of initial stress forces on the free vibrations of the plate. In this work the 

calculations were shown for different geometric and material properties.  

The formulation of the averaged mathematical model for the analysis of dynamic 

behaviour of these plates is based on the tolerance averaging approach. This approach 

can be find in book Woźniak et al. [1]. This technique was applied in many papers. 

Some of the following papers can be mentioned here as examples: Baron [4] has 

analyzed the plates in which the period length is comparable with the thickness of the 

plate. In the work [5] propagation of harmonic wave in periodically laminated 

composites was analyzed. Furthermore, in the paper [6] the rectangular composite plate 

under the plane stress was analyzed. The elastic plate is reinforced by system of 

periodically distributed parallel ribs. Michalak [7] examined vibrations of thin plates 

with initial geometrical imperfections as a model of elastic wavy plates. In the 

contribution [8] the vibrations of periodic three-layered plates with inert core has been 

analysed. 

In contrast to the previous works [9-10], where the gradation only in one direction is 

described, in the present paper it is analyzed in two directions. What is more, in the 

majority of above mentioned notes, in which the plates are considered, the thickness h  

of the plate is essentially smaller compared to the microstructure length parameter 

21lll =  ( 21, ll - dimensions of the cell). Baron [4] considered the thickness of the plate 

similar to the period length which is analogous to the current contribution. The 

difference is in the geometry of the plate which is reinforced in two directions not just in 

one (paper [4]). On a microscopic level we deal with the microheterogeneous plate 

while, after averaging, we deal with a special case of a functionally graded material on 

the macroscopic level (Figure 1).  
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2. Direct description and modelling technique 

In this contribution the rectangular plates shown in Figure 2 are considered. The 

orthogonal Cartesian coordinate system is introduced 321 xxOx  and the time coordinate 

t . In all respects in the note, indices lki ,, … run over 3,2,1 , indices ,...,, gba  and 

indices ,...,, CBA  run over 2,1 . The summation convention holds all aforementioned 

sub-and superscripts. Adopting ),( 21 xxx º  and 3xz =  the undeformed plate occupies 

the region },2/2/:),{( PÎ££-ºW xhzhzx , where P  is the rectangular plate 

midplane and h  is the plate thickness. 

In the framework of a well known theory of thin plates the averaged model equations 

of the dynamic behavior of microheterogeneous plate are obtained. The displacement 

field of the arbitrary point of the plate is given in form 

zxwxwzxwxwzxw )()(),()(),( 3
0

33 aaa ¶-==  (1) 

Denoting by ),( txp  the external forces, r  the mass density, abg  the metric tensor, abÎ  a 

Ricci tensor. Setting k
k x¶¶=¶ /  we also introduce gradient operators ),( 21 ¶¶ºÑ . 

After application of the linear approximated theory for thin plates we obtain the 

following system of equations: 

(i) strain-displacement relations 

3,)(),( wzxzx abababab kke -Ñ==  (2) 

(ii) strain energy 

gdab
abgd eeCzxEz 2

1
),( =  (3) 

(iii) kinetic energy 

)(),( 332

1 ab
ba dr wwwwzxK z
&&&& +=  (4) 

for )2/,2/( hhz -Î . 

The strain energy averaged over the shell thickness is given by 

332

1
)( wwBxE gdab
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The coefficients in the above equations are discontinuous and highly oscillating. The 

above equations will be used as a starting point of the modeling procedure. 

Consequently, going to the modeling technique let us introduce the orthogonal 

coordinates system 21xxO  in the undeformed midplane. The midplane of the plate 

occupies the region ],0[],0[ 21 LL ´ºP  (Figure 2). Assuming that the number of ribs in 

1x  and 
2x  directions is respectively n  and m  ( )1/1,/1 <<mn . Hence nLl /11 =  and 

mLl /22 =  are the dimensions of the cell )2/,2/()2/,2/( 2211 llll -´-ºD . We 

introduce, for the arbitrary cell aa xx +DºD )(  with center situated at point ),( 21 xx , 
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the orthogonal local coordinate system 21yOy  which is local with its origin at 

DPÎ),( 21 xx  where PÌ-´-ºPD )2/,2/()2/,2/( 222111 lLllLl . 

In order to derive averaged model equations for skeletonal plate under consideration 

we applied tolerance averaging approach [1]. There will be introduced some basic 

concepts of this technique: an averaging operator, a tolerance parameter, a tolerance 

periodic function, a slowly varying function and a highly oscillating function.  

The starting point of the modeling procedure is a decomposition of displacement fields. 

ztuhtVtzw

tVtzw

A )),()(),((),,(
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33

a
a

aa
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xxxx

xx
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for P=ax , )2/,2/( hhz -Î , IIIA ,=  and every time t . 

The governing equations derived from stationary action principle of the averaged 

lagragian [2,3] ><+><->>=<< FEKL  have the form 
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After simple manipulations we obtain finally the following equation for the averaged 

displacements ),(3 tV ax ,  

( ) 3
33

~ fVVF =+ÑÑ &&rgd
abgd

ab  (8) 

where hrr =~  is mass density related to plate midplane. In contrast to equations in 

direct description with the discontinuous and highly oscillating coefficients, the 

coefficients in the above equation are smooth and functional.  

3. Applications - fluctuation shape functions 

The key point of the tolerance modeling technique is to determine of fluctuation shape 

function (FSF). In dynamic problems, the system of fluctuation shape function can be 

taken to represent the principal modes of free vibrations of the cell )( axD  or a 

physically reasonable approximation of these modes. Our analysis is to investigate the 

impact of different shape functions on free vibrations of the plate. We are restricted to 

the case where we have two fluctuation shape functions, ),( aa yxhI
 and ),( aa yxhII

 

(Figure 3) 
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Figure 3. Fluctuation shape functions in the considered cell 
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(10) 

where ( )111 xdxlb -=     ( )222 xdylb -= . 

We have considered for four different amplitudes of functions ( )11 yS  and ( )22 yS  as 

following (respectively versions 1-4): 
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have analyzed free vibrations of a simple supported square plate with the constant width 

of the ribs. Taking into the consideration tolerance model, we obtain from (8) 

differential equation describing dynamic behavior of the considered plate 
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where for square plate and ddd yx == , lll == 21  we have 
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Exemplified modulus: 
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In the above formulae we have assume: Poisson's ratio rm nnn == , rm BB ,  stiffness of 

the matrix and rib respectively, rm rr ~,~
- mass density of the matrix and rib related to the 

plate midplane. 

The equation (11) is in the form analogous to equation of motion of homogeneous 

orthotropic plate. This equation will be solved similar to known method for simply 

supported rectangular plates. Restricting our considerations to harmonic vibrations 

( ) ( ) tiexxVtxxV w2121 ,,, =  we derive equation 
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=  into equation (13) we derive formula 

for free vibration frequencies 
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The results obtained above were compared to finite element method calculated by 

Abaqus program [11]. It was considered two-dimensional shell element with a thickness 

equal to 0,10m. The way of modeling of the plate in Abaqus program was described in 

the paper [2]. Ribs are represented by the slave and matrix by master surface. The 

boundary conditions were established as simply supported along the circumference of 

the plate. Calculations were provided for the linear perturbation (frequency). As mesh 

element we assume S4R element as a 4-node doubly curved thin (or thick) shell which 
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provides reduced integration, hourglass control and finite membrane strains. The mesh 

was added to the matrix and ribs separately bearing in mind that for the slave surface the 

mesh needs to be denser. To verify model equations and Abaqus program there will be 

compared values of the first four vibration frequencies. 

4. Results 

Free vibrations frequencies for the plate with constant width of the ribs and geometric 

and material parameters shown below for different shape functions are in Table 1. 

Geometric data: mh 1,0= , size of the plate: mLL 0,421 == , width of the ribs: 

md 05,0= ,size of the cell: mll 20,021 == . Material data: 

3/7800,3,0,210 mkgGPaE rmrr ==== rnn , 3/2400,20 mkgGPaE mm == r  

Table 1. First four free vibrations frequencies for different shape functions 

  
1st mode 2nd mode 3rd mode 4th mode 

Versions 1-4/ 

Abaqus 

[Hz] [Hz] [Hz] [Hz]   

Version 1 141,783 361,147 361,147 567,133 1,62% 

Version 2 161,497 405,614 405,614 645,987 13,63% 

Version 3 170,305 426,001 426,001 681,22 18,09% 

Version 4 182,561 455,748 455,748 730,245 23,59% 

Abaqus 139,490 357,32 357,32 555,060   

 

Figure 4. First four free vibrations frequencies depending on parameter b  
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In the Figure 4 there are shown free frequencies of the first four modes. On the 

horizontal axis is presented parameter rm EE /=b . The calculations are made for the 

constant density equal to 3/2400 mkg and respectively for different amplitudes (10b). 

5. Conclusion 

It can be observed that free vibrations for different versions vary from 2% till 24%. Only 

the 2nd and 4th versions depend on Young’s modulus, We can recognize that the results 

shown in the Figure 4 are convergent for homogenous plate ( )1=b . The higher the b  

parameter is, the higher is the difference between parameters. The most consistent with 

Abaqus' outcome is the 1st version. Further research, in which influence of different 

Young’s modulus on the free vibrations will be investigated. 
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