PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Buckling and bending analysis of porous fg beam using a simple integral QUASI-3D theory

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper introduces a simplified approach to analyze the buckling and static bending of advanced composite beams, including functionally graded materials (FGMs), with various porosity distributions. This method uses a simple integral quasi-3D approach with a higher-order shear deformation theory, which offers several advantages: reduced complexity by requiring fewer unknowns and governing equations compared to other methods; improved accuracy by incorporating the effect of stretching across the beam’s thickness, leading to more accurate results; finally, accurate shear representation by satisfying the zero-traction boundary conditions on the beam’s surfaces without needing a shear correction factor; and it captures the parabolic distribution of the transverse shear strain and stress across the thickness. The virtual work principle is used to derive the governing equations, and the Navier solution is employed to find analytical solutions for buckling and static bending of various boundary conditions for FGM porous beams. The proposed method agrees well with the literature on FGMs and other advanced composite beams. Finally, numerical results showcase how material distribution (including power-law FGMs), geometry, and porosity affect the beam’s deflections, stresses, and critical buckling load.
Rocznik
Strony
30--41
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
  • Mechanical Engineering Department, Faculty of Sciences and Technology, University of Khenchela Khenchela, Algeria
  • Civil Engineering Department, Faculty of Sciences and Technology, University of Khenchela Khenchela, Algeria
  • Materials and Hydrology Laboratory, Civil Engineering Department, Faculty of Technology University of Sidi Bel Abbes, Sidi Bel Abbes, Algeria
  • Civil Engineering Department, Faculty of Sciences and Technology, University of Khenchela Khenchela, Algeria
  • Materials and Hydrology Laboratory, Civil Engineering Department, Faculty of Technology University of Sidi Bel Abbes, Sidi Bel Abbes, Algeria
  • Mechanical Engineering Department, Faculty of Sciences and Technology, University of Khenchela Khenchela, Algeria
  • Civil Engineering Department, Faculty of Sciences and Technology, University of Khenchela Khenchela, Algeria
  • Civil Engineering Department, Faculty of Sciences and Technology, University of Khenchela Khenchela, Algeria
autor
  • Civil Engineering Department, Faculty of Sciences and Technology, University of Khenchela Khenchela, Algeria
  • Civil Engineering Department, Faculty of Sciences and Technology, University of Khenchela Khenchela, Algeria
Bibliografia
  • 1. Zhang, N., Khan, T., Guo, H., Shi, S., Zhong, W., & Zhang, W. (2019). Functionally graded materials: An overview of stability, buckling, and free vibration analysis. Adv. Mater. Sci. Eng., 2019(5), 1-18.
  • 2. Dhuria, M., Grover, N., & Goyal, K. (2021). Influence of porosity distribution on static and buckling responses of porous functionally graded plates. Structures, 34, 1458-1474.
  • 3. Bouhadra, A., Menasria, A., & Rachedi, M.A. (2021). Boundary conditions effect for buckling analysis of porous functionally graded nanobeam. Adv. Nano Res., 10(4), 313-325.
  • 4. Reissner, E., & Stavsky, Y. (1961). Bending and stretching of certain types of heterogeneous aeolotropic elastic plates. J. Appl. Mech., 28(3), 402-408.
  • 5. Della Croce, L., & Venini, P. (2004). Finite elements for functionally graded Reissner-Mindlin plates. Comp. Methods Appl. Mech. Eng., 193(9-11), 705-725.
  • 6. Trabelsi, S., Frikha, A., Zghal, S., & Dammak, F. (2018). Thermal post-buckling analysis of functionally graded material structures using a modified FSDT. Inter. J. Mech. Sci., 144, 74-89.
  • 7. Zaitoun, M.W., Chikh, A., Tounsi, A., Al-Osta, M.A., Sharif, A., Al-Dulaijan, S.U., & Al-Zahrani, M.M. (2022). Influence of the visco-Pasternak foundation parameters on the buckling behawior of a sandwich functional graded ceramic-metal plate in a hygrothermal environment. Thin-Walled Structures, 170, 108549.
  • 8. Slimani, R., Menasria, A., Ali Rachedi, M., Mourad, C., Refrafi, S., Nimer, A.A., Bouhadra, A.,& Mamen, B. (2024). A novel quasi-3D refined HSDT for static bending analysis of porous functionally graded Plates. J. Comp. Appl. Mech., 55, 3, 519-537.
  • 9. Tounsi, A., Bouhadra, A., Bousahla, A.A., & Mahmoud, S. (2017). A new and simple HSDT for thermal stability analysis of FG sandwich plates. Steel Comp. Struct., An International Journal, 25(2), 157-175.
  • 10. Messaoudi, A., Bouhadra, A., Menasria, A., Mamen, B., Boucham, B., Benguediab, M., Tounsi, A., & Al-Osta, M. (2023). Impact of the shear and thickness stretching effects on the free vibrations of advanced composite plates. Mech. Comp. Mater., 59(5), 1001-1018.
  • 11. Chitour, M., Bouhadra, A., Benguediab, S., Saoudi, A., Menasria, A., & Tounsi, A. (2022). Effect of phase contrast and geometrical parameters on bending behavior of sandwich beams with FG isotropic face sheets. Journal of Nano- and Electronic Physics, 14(5).
  • 12. Tien, D.M., Thom, D.V., Minh, P.V., Tho, N.C., Doan, T.N., & Mai, D.N. (2024). The application of the nonlocal theory and various shear strain theories for bending and free vibration analysis of organic nanoplates. Mechanics Based Design of Structures and Machines, 52(1), 588-610.
  • 13. Tuan, L.T., Dung, N.T., Van Thom, D., Van Minh, P., & Zenkour, A.M. (2021). Propagation of non-stationary kinematic disturbances from a spherical cavity in the pseudo-elastic cosserat medium. Europ. Phys. J. Plus, 136, 1-16.
  • 14. Duong, V.Q., Tran, N.D., Luat, D.T., & Thom, D.V. (2022). Static analysis and boundary effect of FG-CNTRC cylindrical shells with various boundary conditions using quasi-3D shear and normal deformations theory. Structures, 44, 828-850.
  • 15. Duc, D.H., Thom, D., & Phuc, P. (2022). Buckling analysis of variable thickness cracked nanoplatesconsiderting the flexoelectric effect. Trans. Commun. Sci. J., 73(5), 470-485.
  • 16. Vu, V.T., Thom, D.V., & Tran, T.D. (2024). Identification of damage in steel beam by natural frequency using machine learning algorithms. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 09544062241255570.
  • 17. Ghazwani, M.H., Alnujaie, A., Youzera, H., Meftah, S.A., & Tounsi, A. (2024). Nonlinear forced vibration investigation of the sandwich porous FGM beams with viscoelastic core layer. Acta Mech., 5, 1-16.
  • 18. Patil, R., Joladarashi, S., & Kadoli, R. (2023). Effect of porosity and viscoelastic boundary conditions on FG sandwich beams in thermal environment: Buckling and vibration studies. Structures, 56, 105001.
  • 19. Daikh, A.A., & Zenkour, A.M. (2019). Effect of porosity on the bending analysis of various functionally graded sandwich plates. Mater. Res. Exp., 6(6), 065703.
  • 20. Sayyad, A.S., & Ghugal, Y.M. (2018). Analytical solutions for bending, buckling, and vibration analyses of exponential functionally graded higher order beams. Asian J. Civil Eng., 19, 607-623.
  • 21. Timoshenko, S.P. (1921). On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Phil. Mag., 41, 744-746.
  • 22. Reddy, J.N. (1984). A simple higher-order theory for laminated composite plates. J. Appl. Mech.,51(4), 745-752.
  • 23. Bernoulli, J. (1964). Curvatura laminae elasticae. Acta Eruditorum Lipsiae, 1694(34), 262-276.
  • 24. Kahya, V., & Turan, M. (2017). Finite element model for vibration and buckling of functionally graded beams based on the first-order shear deformation theory. Compos. Part B: Eng., 109,108-115.
  • 25. Nguyen, T.-K., Vo, T.P., & Thai, H.-T. (2013). Static and free vibration of axially loaded functionally graded beams based on the first-order shear deformation theory. Compos. Part B: Eng., 55, 147-157.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8ea18830-2898-4255-ab70-435df3954e50
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.