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EDGE HOMOGENEOUS COLORINGS
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Abstract. We explore four kinds of edge colorings defined by the requirement of equal
number of colors appearing, in particular ways, around each vertex or each edge. We obtain
the characterization of graphs colorable in such a way that the ends of each edge see (not
regarding the edge color itself) g colors (resp. one end sees ¢ colors and the color sets for both
ends are the same), and a sufficient condition for 2-coloring a graph in a way that the ends of
each edge see (with the omission of that edge color) altogether g colors. The relations of these
colorings to Mg-colorings and role colorings are also discussed; we prove an interpolation
theorem for the numbers of colors in edge coloring where all edges around each vertex have
q colors.
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1. INTRODUCTION

Edge colorings of various types are traditional and widely studied topic in graph theory.
Many of them can be described using the following framework: for a graph G and
a collection of its subgraphs {Hj, ..., H:}, specify the properties of an edge coloring
¢ : E(G) — {1,...,k} by stating size-related conditions on the number |p(H;)| =
|p(e) : e € E(H,)| of colors used on edges of H; for every j =1,...,t. For example,
if H; is the maximal star of G with the central vertex v; € V(G), then the condition
|p(Hj)| = |E(H;)| describes the usual regular edge coloring, and if H; is a facial
cycle of a 2-connected plane graph G, then this condition describes the cyclic edge
coloring (see the survey [5]). For H; j being the maximal double star with the central
edge v;vi, we obtain, in this way, the strong edge coloring (introduced in [9] and
further investigated in [8]). If the collection of subgraphs H; consists of all cycles
and |p(H;)| > 2 is required, the color classes of the corresponding edge coloring are
forests; the associated coloring invariant is the arboricity (see [15,16]). For H; being all
paths and all cycles on three or four edges, the condition |p(H;)| > 3 defines the star
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edge coloring (first considered in [14] and recently surveyed in [13]). Further examples
are so called M;- and m;-colorings introduced by Czap [2]: the collection of subgraphs
H; consists again of all maximal stars, and it is required that |@(H;)| < 4, respectively
|p(Hj)| > i for a fixed positive integer 4; the corresponding graph invariants IC;(G)
and k;(G) (the maximum and the minimum number of colors that may be used in
an M;-, respectively m;-coloring of G) were further studied in [1,3,4,6,11].

Here, we explore some further kinds of edge colorings, which are defined in a similar
manner as M;- or m;-colorings. Let ¢ be a fixed positive integer, G be a graph, and ¢
be an edge coloring of G. We use the following notation: if H is a maximal star of G
with central vertex v, we put ¢(v) := p(H) . Similarly, if H is a maximal double star
with central edge e = uv, we put ¢(e) := ¢(H). Finally, we use the notation @, (e) for
the set of colors used on the maximal star centered at u except of the color of e (that
is, (€)= {p(uw) : w#v}).

We say that ¢ is:

— an M—,-coloring, if for every vertex v € V(G), we have

o) =14,

— an L_,-coloring, if for every edge e € E(G), e = uv we have

e () Ue, (e =g,

— an E_g-coloring, if for every edge e € E(G), e = uv we have

lp, (e)=q and |p (e)] =g,

— an Enq-coloring, if for every edge e € E(G), e = uv we have

().

Note that every M_g4-coloring is both an Mg,- and an mg-coloring. The second
coloring, L_,-coloring, corresponds to g-homogeneous vertex coloring (considered in
[12] and further in [20]; the defining property is the same number of colours used on
neighbours of every vertex) of the line graph of G, but without the requirement to
be proper. It is easy to see that every Ex4-coloring is also an F_g-coloring and an
L_g4-coloring. The converses are not true: for example, take a graph of 3-gonal prism
D3, color all edges in both triangular faces by 1 and 2, respectively, and the remaining
edges by 3; we obtain an L_s-coloring which is neither F_s-coloring nor F.-coloring.
Similarly, the 4-coloring of D3 in which both triangular faces are rainbow and all
quadrangular faces bichromatic is an E_s-coloring, but not Es-coloring. Finally, the
2-coloring of D3 obtained by coloring the edges of a perfect matching by 1 and all
other edges by 2 is an M_s-coloring, but not a coloring of any of three remaining

types.
Regarding M_,-coloring, we obtain the following interpolation coloring theorem.

Theorem 1.1. Let ¢ > 2 be an integer and let G be a graph with 6(G) > q. Then, for
each integer k, ¢ +1 < k < K, (G), there exists an M—,-coloring of G which uses k
colors.

lp, (e))=q and ¢ (e)=¢

U
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For the other coloring concepts, we prove several existence results:

Theorem 1.2. Let G be a graph with §(G) > 4. Then G is L_g-colorable using two
colors.

Theorem 1.3. Let ¢ > 2 be an integer and let G be a connected graph. Then G is
E.q-colorable if and only if G is either a (¢+ 1)-regular graph of Class 1 or §(G) > 2g;
in addition, the number of colors used is ¢ + 1 in the former and q in the latter case.

Theorem 1.4. Let ¢ > 2 be an integer and let G be a connected graph. Then G is
E_,-colorable if and only if G is either a (q + 1)-regular graph or 6(G) > 2q.

2. PROOFS

The proof of Theorem 1.1 is implied by two lemmas which treat the existence of an
M_,-coloring for small and large number of used colors, respectively. The following
fact is easy to see:

Observation 2.1. If G is a graph and k is an integer, X' (G) < k < |E(G)|, then
there is a proper edge coloring of G which uses k colors.

Lemma 2.2. Let q and k be integers, ¢ > 2 and g+ 1 < k < 2q—1. Let G be a graph
such that there are at least two non-pendant vertices of G and degq(v) > q for each
such vertex v. Then there is an edge coloring ¢ of G which uses k colors and |o(v)| = ¢
for each vertex v of degree at least q. N

Proof. Let k and q be fixed throughout this proof. For the sake of simplicity we denote
following two statements for an arbitrary graph G:

A(G): “There are at least two non-pendant vertices of the graph G and deg(v) > ¢
for each such vertex v.”

C(G): “There is an edge coloring ¢ of G which uses k colors and |p(v)| = ¢ for
each vertex v of degree at least q.” N

The goal of the proof is to show that A(G) implies C(G).
Clearly, if A(G) is true then G has at least 2¢ — 1 edges. Denote by V>,(G) the set
of vertices of degree at least ¢ in G. Let

S@ = ¥ max{0,degg(v) — g}
veV(QG)

First suppose that S(G) = 0. In this case, the degree of each non-pendant vertex
is precisely g. Thus, maximum degree of G is ¢ and from Vizing’s theorem we get
X' (G) € {q,q + 1}. Therefore, x'(G) < ¢+ 1 < k < 2¢—1 < |E(G)| and from
Observation 2.1 the existence of ¢ with required properties follows.

Suppose now that S(G) > 0 and for every graph G’ with S(G’) < S(G) the
statement A(G’) implies C(G’). Since S(G) > 0, there is a vertex x of G of degree at
least ¢ 4+ 1. There are three major cases to consider.
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Case 1. Every neighbor of z is pendant. Let y be a neighbor of  in G. Clearly,
V>¢(G —y) = V>4(G) and therefore, A(G —y) is true. Since S(G —y) is clearly smaller
than S(G), there is an edge coloring ¢ of G — y which uses k colors and |¢(v)| = ¢
for each v € Vs q(G — y). Set ¢(e) = 1(e) for every edge e € E(G — y) and ¢(zy) = ¢,
where ¢ is a color from ¢(z). It is easy to see that ¢(G) = (G — y) as well as
©(v) = ¥(v) for each vertex v # y of G. Thus, ¢ is the coloring of G with required

properties.

Case 2. The vertex x has a neighbor y of degree at least ¢ + 1 in G. By removing the
edge zy we obtain the graph G — zy such that S(G — zy) < S(G) and A(G — zy) is
true. Therefore, like in the previous case, there is an edge coloring i of G — xy such
that |¢(G — xy)| = k and [¢(v)| = ¢ for each v € V>4(G — zy). Since both z and y
are vertices of degree at least ¢ in G — zy and k < 2q — 1, there is a color ¢ from
¥(x) N (y). By assigning the color ¢ to xy, we can extend v to all edges of G, thereby
obtaining the coloring of G with required properties.

Case 3. The vertex x has a neighbor y of degree ¢. In addition we may suppose that
none of the neighbors of z in G is of degree at least ¢ + 1, otherwise one could use
the method described in the Case 2. Let G’ be a graph obtained from G — xy by
adding a new vertex z and an edge yz. Like in the previous cases, it is easy to see
that S(G') < S(G) and A(G’) is true. Let ¢ be an edge coloring of G’ which uses k
colors and |1)(v)| = g for each v € V>4(G’). Since ¢ uses at most 2¢ — 1 colors, there is
a color ¢ in the set ¢ (z) N1(y). If ¢ = ¥ (yz), one can define an edge coloring ¢ of G
such that p(e) = v(e) for each edge e € E(G) N E(G’) and ¢(xy) = 1(yz). It is easy
to see that in this case ¢ has the required properties, more precisely ¢ uses k colors
and ¢(v) = ¥(v) for each vertex v of G.

Suppose now that the color ¢ is different from ¢ (yz).If ¢ (yz) is used also on
another edge in G’, then there is a color ¢ € ¥(z) \ ¥ (y) (since ¥(yz) ¢ ¢¥(z)). If
we define an edge coloring ¢ of G by setting p(e) = 1(e) for each e € E(G) N E(G")
and p(zy) = ¢/, then ¢ has desired properties. Hence, assume that the color ¥ (yz) is
used only once. Consider the graph G’[¢)~1(c)]. If there is a monochromatic path of
color ¢ between z and y in G’, then it has length at least 2, thus it passes through
a neighbor v of z. Since |¢(v)| = ¢ and ¢ is used on at least two edges incident with v,
degs(v) = degg (v) > g+1, and we obtain the situation as in Case 2. Therefore, assume
that  and y belong to different components of G’[1)~*(c)]. Let H be a component of
G[¢~1(c)] which contains 2. Note that, for each w € V(H), ¢ € ¥ (w). After recoloring
the edges of H with color 1(yz) we can continue like in the first part of the Case 3. [

It is easy to see that, for an M -coloring of a graph G, the recoloring of all edges
of the same color class with another color yields again an Mg-coloring; therefore,
M -coloring of G exists for every number of colors whis does not exceed Ky(G).

Lemma 2.3. Let g > 2 and k > 2q be positive integers and let G be a graph with
0(GQ) > q. If there is an My-edge coloring of G which uses k colors, then there is also
an M—g-edge coloring of G using the same number of colors.
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Proof. Suppose that for some graph G and integers g, k, the statement does not hold.
Let @ be the set of all My-edge colorings of G which use k colors. Let ¢ be the edge
coloring from & such that

Se)= > (a-leW))

veV(Q)

is the smallest possible. Clearly, S(¢) > 0, otherwise ¢ is an M_4-coloring.

Let vy be a vertex such that |¢(vg)| < ¢. Denote by ¢ a color used at least twice
on edges incident with vy in ¢, and let v; be a neighbor of vy such that w(vovr) = c.
There are several cases to be considered.

Case 1. Suppose that [¢(v1)| = q.

Subcase 1.1. Let ¢ be used only once on edges incident with v;. Since

lp(vo) Up(v1)| < (¢ —1)+q=2¢— 1<k,

there is a color
¢ € (G) \ (p(vo) Up(vy).

By recoloring the edge vov; with ¢/, we obtain an edge coloring ¢* € ® such that
S(p*) < S(p), a contradiction.

Subcase 1.2. Let ¢ be used at least twice on edges incident with v1. Since

o(v) =g > [e(vo)l,

there is a color

¢ € p(v1) ~ ¢(vo)-
By recoloring the edge vgv; with ¢/, we obtain an edge coloring ¢* € ® with
S(p*) < S(p), a contradiction.

Case 2. Suppose now that |p(v1)| < ¢. Then there exists a color

¢ € (@) \ (p(vo) Up(v1))

(because [¢(vo) U p(v1)| < 2¢ < k). By recoloring the edge vov; with ¢/, we obtain
an edge coloring ¢* € ® such that |¢*(vo)| > |@(vo)| and [¢*(v1)| > [@(v1)]; hence
S(p*) < S(p), a contradiction. O

Let us note that, for E_g4-coloring, an analogue of Theorem 1.1 does not hold. To
demonstrate this, consider an E_s-coloring of a 4-regular graph G. It is not hard to
see that if an edge uv has a color ¢, then ¢ appears also on two other edges incident
with u and v, respectively. This implies that the color classes of E_s-coloring of G are
the collections of edge-disjoint cycles. Now, take the graph of the icosidodecahedron
(which is plane and 4-regular, and consists of 20 triangular and 12 pentagonal faces in
such a way that none two faces of the same size share an edge). For this graph, there
exists an F_s-coloring using 12 and 20 colors, as seen from the collection of all its
triangular resp. pentagonal faces. If there exists such a coloring which uses 19 colors,
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then the edge set shall be partitioned into 19 cycles. Since the icosidodecahedron graph
contains no 4-cycles, such a partition necessarily contains 18 3-cycles and a single
6-cycle which is formed by adjacent triangular and pentagonal face. This 6-cycle,
however, prevents five 3-cycles to be part of the considered partition, a contradiction.

Note that an Ex4-coloring is a special case of an E_g-coloring. Therefore, if a graph
G admits an Fr4-coloring, then it also admits an E_,-coloring, for given ¢ > 2. On
the other hand, if G' does not admit an E_g,-coloring, then it does not admit an
Erq4-coloring. Thus, the following lemmas prove both Theorem 1.3 and Theorem 1.4;
Theorem 1.2 then follows from Theorem 1.3.

Lemma 2.4. Let ¢ be an edge coloring of a (¢ + 1)-reqular graph G. Then, ¢ is
an E_,-coloring of G if and only if ¢ is a proper coloring of G.

Proof. First, let ¢ be an E_,-coloring of G. Suppose to the contrary that ¢ is not
a proper coloring of G. Let e be the edge of G with endvertices u and v, such that
p(e) is used at least twice on edges incident with v. Denote by ei,...,eq441 the
edges incident with v in G, e; = e and ¢(e2) = ¢(e1). Since, ¢ is an E_,-coloring,
{e(ea),. .., p(eq+1}] = g. Therefore, p(e3) is different from ¢(ez). Evidently, ¢ (es) =
@, (e) ~ {p(es)}. Thus, [p (e3)| = ¢ — 1, a contradiction; so, ¢ is a proper coloring
of G.

On the other hand, it is easy to see that each proper coloring of G is also an
E_-coloring of G, which completes the proof. O

It is easy to see that a proper coloring of a (g + 1)-regular graph is an Ex4-coloring
if and only if G is of class 1.

Lemma 2.5. If G is an E—,-colorable graph for some ¢ > 2, then G' does not contain
a vertex v such that ¢ +1 < degg(v) < 2q.

Proof. Suppose the lemma were false. Then we could find an E_;-coloring ¢ of a graph
G and a vertex v € V(G) such that ¢+ 1 < degq(v) < 2¢. Since ¢+ 1 < degx(v), there
are two edges incident to v, denoted by e; and e, which are colored with the same
color. On the other hand, deg.(v) < 2¢ implies that there is an edge e3 incident to v
which has unique color, i.e., the color used on eg is used only once on edges incident
to v. Therefore, ¢ (e1) = p(v) and ¢ (e3) = ¢(v) \ {p(e3)}. Thus, sets p (e1) and
¢, (e3) have clearly different cardinalities, a contradiction. O

Lemma 2.6. Let ¢ > 2 be an integer and let ¢ be an E_g4-coloring of a graph G.
If |o(v)| = ¢+ 1 then degg(v) = g+ 1.

Proof. Suppose that ¢ be an E—,-coloring of a graph G and there is a vertex v € V/(G)
such that |p(v)| = ¢ + 1 and degg(v) > g + 2. Then, there is a color ¢ which is used
on at least two edges incident to v. Let e be the edge of color ¢ incident with v. Then
¢, (e) = ¢(v) and therefore, |p (e)| = ¢+ 1, a contradiction. O
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Lemma 2.7. Let ¢ > 2 be an integer and let G be a graph with 6(G) > 2q. Then G is
E~q-colorable using q colors.

Proof. Let G be a graph with 6(G) > 2¢ which is not Ex4-colorable using ¢ colors,
and

S(G) = ) (degg(v) - 2q)

veV(G)

be minimal.

Suppose that there are two adjacent vertices u and v of degree at least 2q + 1
in G. Clearly, S(G — uwv) < S(G), thus, G — uv is Exg4-colorable. We may expand
E~q-coloring of G — uv to Exg4-coloring of G, which uses ¢ colors, by simply coloring
the edge uv with any color.

Now, suppose that G does not contain a pair of adjacent vertices of degree at least
2q + 1. First, we discuss the case, when there are at least two vertices, denoted by uy
and ug, of degree at least 2¢+ 1 in G. Let v; and v be two vertices adjacent to u; and
ug, respectively. Let H be the graph which is obtained by removing an edge from
K441, and let z1 and z2 be two vertices of H with degy(x1) = degy(x2) = 2¢ — 1.
We now construct a graph G’ from the disjoint union of G — ujv; — ugvy and H, by
adding edges z1v; and xovy. Clearly, 6(G’) > 2¢ and S(G’) < S(G). Thus, there is
an Er4-coloring ¢’ of G’ with ¢ colors. Let ¢ be an edge coloring of G such that
ple) = ¢'(€') for each e € E(G) N E(G'), p(uiv1) = ¢'(z1v1) and p(ugve) = ¢’ (z2v2).
Evidently, ¢ is an Ex4-coloring of G.

Finally, we discuss the case, when there is only one vertex of G, denoted by wu,
of degree at least 2¢q + 1. Since the sum of degrees of all vertices of a graph is even,
the degree of v in G is at least 2¢ 4 2. Let v; and vy be two neighbors of u, both of
degree 2¢ in G. Similarly, as in previous case, let H be a graph obtained from Koq11
by removing an edge. Denote by x1 and x5 vertices of degree 2g — 1 in H. Let G’ be
the graph obtained from the disjoint union of G — uv; — uvy and H, by adding edges
x1v1 and zav2. Analogously to previous case, S(G') < S(G) implies the existence of
E.4-coloring of G’, which can be easily transformed into Ex4-coloring of G.

Therefore, G does not contain a vertex of degree at least 2¢+1. Thus, G is 2¢-regular
graph and by Petersen’s 2-factor theorem, it is 2-factorable. By coloring ¢ edge disjoint
2-factors with one color each, we obtain an Ex4-coloring, a contradiction. O]

3. CONCLUDING REMARKS

Theorem 1.2 yields that line graph of each graph of minimum degree at least 4 is
vertex 2-colorable in a way that each vertex contains both colors in its neighborhood.
This coloring is known as the R6-role coloring (see [7]) and its existence for general
graphs was shown to be NP-complete in [18]; it remains NP-complete even for split
graphs, see [10]. For some graph classes, like chordal graphs ([19]) or cographs ([17]),
the existence of a general 2-role coloring (that is, not restricted to R6-type) can be
decided in polynomial time; however, the role and homogeneous colorability (in the
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sense that each vertex sees the same number of colors) of line- and related graphs as
well as of selected graph operations seems to be still open.

Note also that there are graphs of minimum degree 2 which do not have an
L_5-coloring with just two colors — an easy example is theta-graph formed from three
paths of length 5 (however, it is L_o colorable using three colors). Therefore, it would
be interesting to find a graph of minimum degree 2 or 3 which is not L_s-colorable
(as we believe that it might exist).
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