PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dual resonance self-referenced refractive index sensor using 2D silicon photonic crystal cavity waveguide system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, we have designed and simulated a dual resonance self-referenced refractive index sensor using two dimensional “silicon rods in air” photonic crystal. The proposed sensor uses two wavelengths, namely sensing wavelength and the reference wavelength, to measure the change in the transmission of light with respect to the change in refractive index. It is shown that a change of refractive-index of the photonic crystal rods (in the range of 3.46–3.466) causes a significant change in transmission of the sensing wavelength, while, transmission of the reference wavelength remains almost same. This method of sensing is more efficient in gauging the impact of external factors on the results generated by the sensor. The proposed sensor exhibits a fairly high sensitivity and quality factor of 9912.85% / RIU and 708.17, respectively. The device is compact in size making it portable and hence suitable for field applications. Most of the self-referenced refractive index sensors use wavelength shift to measure different parameters but in the present paper we have used the difference of transmission between two (sensing and reference) wavelengths at a particular refractive- index to calculate the performance of the sensor.
Czasopismo
Rocznik
Strony
497--509
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
  • Department of Physics, Central University of Jharkhand, Ranchi, India
autor
  • Department of Physics, Central University of Jharkhand, Ranchi, India
  • Department of Physics, Central University of Jharkhand, Ranchi, India
Bibliografia
  • [1] WU Y., ZHOU Y., PAN J, HUANG T., JIN S., Design of highly sensitive refractive index sensor based on silicon photonic Mach–Zehnder interferometer, Optics Communications 534, 2023, 129288. https://doi.org/10.1016/j.optcom.2023.129288
  • [2] ROCCO D., TOGNAZZI A., GANDOLFI M., CARLETTI L., DE ANGELIS C., LOCATELLI A., CINO A.C., Refractive index sensing by a silicon meta surface, 2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON), Palermo, Italy, 2022: 266-270. https://doi.org/10.1109/melecon53508.2022.9842969
  • [3] HAMDANI M.A., QAZI G., Modelling and theoretical analysis of a novel common mirror based silicon photonic Michelson modulator, Optical and Quantum Electronics 55, 2023: 41. https://doi.org/10.1007/s11082-022-04312-4
  • [4] HAMDANI M.A., QAZI G., Evaluating variability and improving tolerance in a novel and compact silicon photonic Michelson interferometer, Silicon 14, 2022: 9945-9958. https://doi.org/10.1007/s12633-022-01677-9
  • [5] ZIEBELL M., MARRIS-MORINI D., RASIGADE G., FÉDÉLI J.-M., CROZAT P., CASSAN E., BOUVILLE D., VIVIEN L., 40 Gbit/s low-loss silicon optical modulator based on a pipin diode, Optics Express 20(10), 2012: 10591-10596. https://doi.org/10.1364/oe.20.010591
  • [6] THOMSON D.J., GARDES F.Y., REED G.T, MILESI F., FEDELI J.-M.,High speed silicon optical modulator with self aligned fabrication process, Optics Express 18(18), 2010: 19064-19069. https://doi.org/10.1364/oe.18.019064
  • [7] DAWOOD N.Y.M., YOUNIS B.M., AREED N.F.F., HAMEED M.F.O, OBAYYA S.S.A., Mid-infrared optical modulator based on silicon D-shaped photonic crystal fiber with VO2 material, Applied Optics 60(30), 2021: 9488-9496. https://doi.org/10.1364/ao.440371
  • [8] SINGH J.J., DHAWAN D., GUPTA N., 2D photonic crystal hexagonal ring resonator-based all-optical logic gates, Optics & Laser Technology 165, 2023: 109624. https://doi.org/10.1016/j.optlastec.2023.109624
  • [9] CHANU S. A., SONKAR R. K., High coupling efficiency photonic crystal waveguide for compact channel drop filter design on silicon-on-insulator platfor, Optical Engineering 62(8), 2023: 087101. https://doi.org/10.1117/1.oe.62.8.087101
  • [10] CHHIPA M.K., MADHAV B.T.P., ROBINSON S, JANYANI V., SUTHAR B.,Realization of all-optical logic gates using a single design of 2D photonic band gap structure by square ring resonator, Optical Engineering 60(7), 2021: 075104. https://doi.org/10.1117/1.oe.60.7.075104
  • [11] KUMAR A., MEDHEKAR S., All optical NOR and NAND gates using four circular cavities created in 2D nonlinear photonic crystal, Optics & Laser Technology 123, 2020: 105910. https://doi.org/10.1016/j.optlastec.2019.105910
  • [12] MIRZAIEE S., NOORI M., BAGHBAN H., VELADI H., All-optical memory based on slow light and Kerr effect in photonic crystal platform with independent write/read/hold control, Physica Scripta 97(6), 2022: 065502. https://doi.org/10.1088/1402-4896/ac698e
  • [13] ZARGARZADEH M., YAVARI M.H., HEYDARI M., REZAEI M.H., Refractive index sensor based on photonic crystal nanocavities, 2021 29th Iranian Conference on Electrical Engineering (ICEE), Tehran, Islamic Republic of Iran, 2021: 39-42. https://doi.org/10.1109/icee52715.2021.9544255
  • [14] MALEKI M.J., SOROOSH M., A novel proposal for performance improvement in two-dimensional photonic crystal-based 2-to-4 decoders, Laser Physics 30, 2020: 076203. https://doi.org/10.1088/1555-6611/ab9089
  • [15] RADHOUENE M., NAJJAR M., CHHIPA M.K., ROBINSON S., SUTHAR B., Design and analysis a thermo-optic switch based on photonic crystal ring resonator, Optik 172, 2018: 924-929. https://doi.org/10.1016/j.ijleo.2018.07.118
  • [16] VENKATACHALAM K., KUMAR D.S., ROBINSON S., Investigation on 2D photonic crystal-based eight-channel wavelength-division demultiplexer, Photonic Network Communications 34, 2017: 100-110. https://doi.org/10.1007/s11107-016-0675-7
  • [17] BISWAS U., RAKSHIT J.K., DAS. J., BHARTI. G.K., SUTHAR B., AMPHAWAN A., NAJJAR M., Design of an ultra-compact and highly-sensitive temperature sensor using photonic crystal based single micro-ring resonator and cascaded micro-ring resonator, Silicon 13, 2021: 885-892. https://doi.org/10.1007/s12633-020-00489-z
  • [18] SHARMA P., MEDHEKAR S., Ring resonator-based highly sensitive chemical/biochemical sensor created on holes in silicon slab 2D photonic crystal, Journal of Optics 52, 2023: 2315-2322. https://doi.org/10.1007/s12596-023-01149-2
  • [19] MIYAN H., AGRAHARI R., GOWRE S.K., JAIN P.K., MAHTO M., Photonic crystal based ultrafast and highly sensitive refractive index sensor, IEEE Sensors Journal 23(14), 2023: 15563-15569. https://doi.org/10.1109/jsen.2023.3283506
  • [20] NOHOJI A.H.A., DANAIE M., Highly sensitive refractive index sensor based on photonic crystal ring resonators nested in a Mach–Zehnder interferometer, Optical and Quantum Electronics 54, 2022: 574. https://doi.org/10.1007/s11082-022-04006-x
  • [21] NAJAFGHOLINEZHAD S., OLYAEE S., A photonic crystal biosensor with temperature dependency investigation of micro-cavity resonator, Optik 125(21), 2014: 6562-6565. https://doi.org/10.1016/j.ijleo.2014.08.043
  • [22] ZEGADI R., ZEGADI A., ZEBIRI C., MOSBAH S., MEKKI S., BOUKNIA M.L., BENJEDI H., Enhanced 2D photonic crystal sensor for high sensitivity sulfuric acid (H2 SO4 ) and hydrogen peroxide (H2O2 ) detection, Silicon 14, 2022: 11001-11006. https://doi.org/10.1007/s12633-022-01836-y
  • [23] PENG F., WANG Z., YUAN G., GUAN L., PENG Z., High-sensitivity refractive index sensing based on Fano resonances in a photonic crystal cavity-coupled microring resonator, IEEE Photonics Journal 10(2), 2018: 6600808. https://doi.org/10.1109/jphot.2018.2815622
  • [24] OLYAEE S., NAJAFGHOLINEZHAD S., ALIPOUR BANAEI H., Four-channel label-free photonic crystal biosensor using nanocavity resonators, Photonic Sensors 3, 2013: 231-236. https://doi.org/10.1007/ s13320-013-0110-y
  • [25] ZHAO M., WANG J., ZHANG Y., GE M., ZHANG P., SHEN J., LI C., Self-referenced refractive index sensor based on double-dips method with bimetal-dielectric and double-groove grating, Optics Express 30(5), 2022: 8376-8390. https://doi.org/10.1364/oe.454344
  • [26] CHOWDHURY U., MUKHERJEE R., MAITY A.R., KUMAR S., MAJI P.S., Self-referenced refractive index sensor utilizing Tamm plasmon in a photonic quasicrystal, Optical and Quantum Electronics 55, 2023: 869. https://doi.org/10.1007/s11082-023-05160-6
  • [27] BARRIOS C.A., MIREA T., REPRESA M.H., A self-referenced refractive index sensor based on gold nanoislands, Sensors 23(1), 2023: 66. https://doi.org/10.3390/s23010066
  • [28] SRIVASTAVA S.K, VERMA R, GUPTA B.D., Theoretical modeling of a self-referenced dual mode SPR sensor utilizing indium tin oxide film, Optics Communications 369, 2016: 131-137. https://doi.org/10.1016/j.optcom.2016.02.035
  • [29] VERMA R., SRIVASTAVA S.K., Self-referenced dual mode SPR sensing using sandwiched ITO layer: Long range vs. short range SPR referencing, 13th International Conference on Fiber Optics and Photonics, December 4-8, 2016, Kanpur, India. https://doi.org/10.1364/PHOTONICS.2016.Th3A.79
  • [30] KUMAR S., SHUKLA M.K., MAJI P.S., DAS R., Self-referenced refractive index sensing with hybrid-Tamm-plasmon-polariton modes in sub-wavelength analyte layers, Journal of Physics D: Applied Physics 50(37), 2017, 375106. https://doi.org/10.1088/1361-6463/aa7fd7
  • [31] ZHANG M., GE C., LU M., ZHANG Z., CUNNINGHAM B.T., A self-referencing biosensor based upon a dual-mode external cavity laser, Applied Physics Letters 102(21), 2013: 213701. https://doi.org/10.1063/1.4801427
  • [32] ABUTOAMA M., ABDULHALIM I., Angular and intensity modes self-referenced refractive index sensor based on thin dielectric grating combined with thin metal film, IEEE Journal of Selected Topics in Quantum Electronics 23(2), 2017: 72-80. https://doi.org/10.1109/jstqe.2016.2520878
  • [33] WANG X., ZHU J., XU Y., QI Y., ZHANG L., YANG H., YI Z., A plasmonic refractive index sensor with double self-reference characteristic, Europhysics Letters 135(2), 2021: 27001. https://doi.org/10.1209/0295-5075/135/27001
  • [34] VERMA S.K., SRIVASTAVA S.K., High performance extra-ordinary transmission based self-referenced plasmonic metagrating sensor in NIR communication band, Physica Scripta 98(5), 2023: 055515. https://doi.org/10.1088/1402-4896/accb16
  • [35] WANG Y., SUN C., LI H., GONG Q., CHEN J., Self-reference plasmonic sensors based on double Fano resonances, Nanoscale 9(31), 2017: 11085-11092. https://doi.org/10.1039/C7NR04259K
  • [36] SUN P., ZHOU C., JIA W., WANG J., XIANG C., XIE Y., ZHAO D., Self-referenced refractive index sensor based on hybrid mode resonances in 2D metal-dielectric grating, Journal of Physics D: Applied Physics 53(14), 2020: 145101. http://doi.org/10.1088/1361-6463/ab6624
  • [37] PAN J., SRIVASTAVA S.K., Simulation of a self-referenced meta grating sensor with high figure of merit in NIR communication window, IEEE Sensors Journal 23(8), 2023: 8344-8351. https://doi.org/ 10.1109/JSEN.2023.3250952
  • [38] SUN P., XIE Y., XIANG C., ZHAO D., WANG J., JEI W., ZHOU C., Non-equidistant arrangement in all-dielectric quadrumers and mirror-symmetric one-dimensional photonic crystals hybridstructure for self-referenced sensing scheme, Journal of Lightwave Technology 38(23), 2020: 6671-6677. https://doi.org/10.1109/JLT.2020.3013672
  • [39] JOANNOPOULOS J.D., JOHNSON S.G., WINN J.N., MEADE R.D., Photonic Crystals: Molding the Flow of Light, Princeton University Press, 2008.
  • [40] LEUNG K.M., LIU Y.F., Photon band structures: The plane-wave method, Physical Review B 41, 1990: 10188. https://doi.org/10.1103/physrevb.41.10188
  • [41] PARAPURATH A., ALPEGGIANI F., KUIPERS L., VERHAGEN E., Direct observation of topological edge states in silicon photonic crystals: Spin,dispersion and chiral routing, Science Advances 6(10), 2020. https://doi.org/10.1126/sciadv.aaw4137
  • [42] ALIPOUR-BANAEI H., JAHNARA M., MEHEDIZADEH F., Channel drop filter based on photonic crystal ring resonator, Optica Applicata 48(4), 2018: 601-608. https://doi.org/10.5277/oa180406
  • [43] WU M., YANG Y., FEI H., LIN H.,ZHAO X., KANG L., XIAO L., On-chip ultra-compact hexagoanl boron nitride topological ring-resonator in visible region, Journal of Lightwave Technology 40(23), 2022: 7610-7618. https://doi.org/10.1109/JLT.2022.3203563
  • [44] RUPALI, SAHU S.K., PALAI G., KUMAR B.A., MISHRA B.K., Modelling of photonic crystal based ring resonator sensor for cancer detection using infrared laser, Journal of Optics, 2024. https://doi.org/10.1007/s12596-024-02107-2
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8e97cb54-a3e9-47c3-8866-2cba857bf7c8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.