PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Extracellular polymeric substance of Rhodococcus opacus bacteria effects on calcium carbonate formation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An extracellular substance extracted from the bacterial strain Rhodococcus opacus was used as a template for calcium carbonate precipitation from CaCl2 and Na2CO3 solutions at 25 and 37 °C. Obtained crystals were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy. Kinetics of precipitation was investigated by conductivity measurements. The obtained results show that the used biopolymer does not affect the crystal structure but acts as a nucleation centers leading to the formation of calcite crystals with the regular size. This effect is concentration dependent i.e. the EPS concentration increase causes the crystal size decreases, and is greater if calcium chloride solution if mixed with EPS 15 min before the addition of sodium carbonate solution. The temperature increase strengthens this effect.
Słowa kluczowe
Rocznik
Strony
142--150
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
  • Department of Physical Chemistry - Interfacial Phenomena, Faculty of Chemistry, Lublin, Poland
  • Department of Biochemistry, Maria Curie-Sklodowska University, Lublin, Poland
  • Department of Biochemistry, Maria Curie-Sklodowska University, Lublin, Poland
autor
  • Institute of Agrophysics Polish Academy of Science, Lublin, Poland
autor
  • Department of Physical Chemistry - Interfacial Phenomena, Faculty of Chemistry, Lublin, Poland
autor
  • Department of Physical Chemistry - Interfacial Phenomena, Faculty of Chemistry, Lublin, Poland
Bibliografia
  • LIAN, B., HU, Q., CHEN, J., JI, J., H., TENG, H., 2006. Carbonate biomineralization induced by soil bacterium Bacillus megaterium. Geochim. Cosmochim. Acta, 70, 5522–5535.
  • BAINS, A., DHAMI, N.K., MUKHERJEE, A., REDDY, M.S., 2015. Influence of Exopolymeric Materials on Bacterially Induced Mineralization of Carbonates. Appl. Biochem. Biotechnol., 175, 3531–3541.
  • BRAISSANT, O., CAILLEAU, G., DUPRAZ, C., VERRECCHIA, E.P., 2003. Bacterially induced mineralization of calcium carbonate in terrestrial environments: the role of Exopolysaccharides and amino acids. J. Sediment. Res., 73, 485–490.
  • BRAISSANT, O., DECHO, A.W., DUPRAZ, C., GLUNK, C., PRZEKOP, K.M., VISSCHER, P.T., 2007. Exopolymeric substances of sulfate-reducing bacteria: Interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology, 5, 401–411.
  • CZEMIERSKA, M., SZCZEŚ, A., HOŁYSZ, L., WIATER, A., JAROSZ-WILKOLAZKA, A., 2017. Characterisation of exopolymer R-202 isolated from Rhodococcus rhodochrous and its flocculating properties. Eur. Polymer J., 88, 21-33.
  • DHAMI, N.D., SUDHAKARA REDDY, M., MUKHERJEE, A., 2013. Biomineralization of calcium carbonates and their engineered applications: a review. Front. Microbiol., 4, 1-13.
  • DICK, J., DE WINDT, W., DE GRAEF, W., SAVEYN, H., VAN DER MEEREN, P., DE BELIE, N., VERSTRAETE, W., 2006. Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus Species. Biodegradation, 17, 357–367.
  • ERCOLE, C., CACCHIO, P., BOTTA, A.L., CENTI, V., LEPIDI, A., 2007. Bacterially Induced Mineralization of Calcium Carbonate: The Role of Exopolysaccharides and Capsular Polysaccharides. Microsc. Microanal., 13, 42–50.
  • FERRIS, F.G., PHOENIX, V., FUJITA, Y., SMITH, R.V., 2003. Kinetics of calcite precipitation induced by ureolytic bacteria at 10 to 20°C in artificial groundwater. Geochim. Cosmochim. Acta, 67(8), 1701–1722.
  • GABRELI, C., JAOUHARI, R., JOIRET, R., JOIRET, S., MAURIN, G., 2000. In situ Raman spectroscopy applied to electrochemical scaling. Determination of the structure of vaterite. J. Raman Spectrosc., 31, 497-501.
  • HAMMES, F., BOON, N., DE VILLIERS, J., VERSTRAETE, W., SICILIANO, S.D., 2003. Strain-Specific Ureolytic Microbial Calcium Carbonate Precipitation. Appl. Environ. Microb., 68(8), 4901–4909.
  • HOOD, M.A., LANDFESTER, K., MUÑOZ-ESPI, R., 2014. The role of residue acidity on the stabilization of vaterite by amino acids and oligopeptides. Cryst. Growth Des., 14, 1077-1085.
  • HUANG, Z., ZHANG, G., 2012. Biomimetic Synthesis of Aragonite Nanorod Aggregates with Unusual Morphologies Using a Novel Template of Natural Fibrous Proteins at Ambient Condition. Cryst. Growth Des., 12, 1816−1822.
  • KAWAGUCHI, T., DECHO, A.W., 2002. A laboratory investigation of cyanobacterial extracellular polymeric secretions (EPS) in influencing CaCO3 polymorphism. J. Cryst. Growth, 240, 230–235.
  • KREMER, B., KAZMIERCZAK, J., STAL, L.J., 2008. Calcium carbonate precipitation in cyanobacterial mats from sandy tidal flats of the North Sea. Geobiology, 6, 46–56.
  • LEE, C.S., ROBINSON, J., CHONG, M.F., 2014. A review on application of flocculants in wastewater treatment. Process Saf. Environ. Prot., 92, 489–508.
  • LIU, C., WANG, K., JIANG, J.-H., LIU, W.-J., WANG, J.-Y., 2014. A novel bioflocculant produced by a salt-tolerant, alkaliphilic and biofilm-forming strain Bacillus agaradhaerens C9 and its application in harvesting Chlorella minutissima UTEX2341. Biochem. Eng. J., 93, 166–172.
  • MA, Y., QIAO, Y., FENG, Q., 2012. In-vitro study on calcium carbonate crystal growth mediated by organic matrix extracted from fresh water pearls. Mater. Sci. Eng. C, 32, 1963–1970.
  • OLAVI KAJANDER, E., ÇIFTÇIOGLU, N., 1998, Nanobacteria: An alternative mechanism for pathogenic intra- and extracellular calcification and stone formation. Proc. Natl. Acad. Sci. USA, 95, 8274–8279.
  • PHILLIPS, A., CUNNINGHAM, A.B., GERLACH, R., HIEBERT, R., HWANG, C., LOMANS, B.P., WESTRICH, J., MANTILLA, C., KIRKSEY, J., ESPOSOTO, R., SPANGLER, L., 2016. Fracture Sealing with Microbially-Induced Calcium Carbonate Precipitation: A Field Study. Environ. Sci. Technol., 50, 4111−4117.
  • RIETVELD, H.M., 1969. A profile refinement method for nuclear and magnetic structure. J. Appl. Cryst., 2, 65–71.
  • RODRIGUEZ-NAVARRO, C., JIMENEZ-LOPEZ, C., RODRIGUEZ-NAVARRO, A., GONZALEZ-MUNOZ, M.T., RODRIGUEZ-GALLEGO, M., 2007. Bacterially mediated mineralization of vaterite. Geochim. Cosmochim. Acta 71, 51197–1213.
  • SADOWSKI, Z., BASTRZYK, A., POLOWCZYK, I., 2016. Effect of macromolecules on the structures of calcium carbonate, in: Calcium Carbonate, Occurrence, Characterization and Application. A. Cohen (Eds.) Nova Publisher, N. York, 2016, pp. 29-47.
  • SCRIVENERA, K.L., FÜLLMANNA, T., GALLUCCIA, E., WALENTAB, G., BERMEJOB, E., 2004. Quantitative study of Portland cement hydration by X-ray diffraction/Rietveld analysis and independent methods. Cement Concrete Res., 34, 1541–1547.
  • SZCZEŚ, A., CZEMIERSKA, M., JAROSZ-WILKOŁAZKA, A., 2016. Calcium carbonate formation on mica supported extracellular polymeric substance produced by Rhodococcus opacus. J. Solid State Chem., 242, 212–221.
  • SZCZEŚ, A., STERNIK, D., 2016. Properties of calcium carbonate precipitated in the presence of DPPC liposomes modified with the phospholipase A2. J. Therm. Anal. Calorim., 123, 2357–2365.
  • XUE, Z.H., HU, B.B., JIA, X.L., WANG, H.W., DU, Z.L., 2009. Effect of the interaction between bovine serum albumin Langmuir monolayer and calcite on the crystallization of CaCO3 nanoparticles. Mater. Chem. Phys., 114, 47–52.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8e977634-b301-4f99-953a-8e618f93be60
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.