Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Rozwój i optymalizacja urządzenia sterującego napędemhydraulicznym przenośnika taśmowego
Języki publikacji
Abstrakty
Designing new hydraulic equipment requires consideration of the peculiarities of the operating modes of the technological machines.This particularly applies to the hydraulic drive of a belt conveyor, which operates under variable load conditions. Therefore, investigations aimedat reducing static and dynamic characteristic indicators, design calculations, as well as three-dimensional modelling, are relevant tasks for engineersand scientists. Various optimization methods for dynamic processes have been considered. Preference has been given to the linear programming methodas the main one for optimizing dynamic processes in the hydraulic drive under overload conditions. Fundamental schemes of the belt conveyor hydraulic drive and control device have been developed and their principles of operation described. Nonlinear differential equations inCauchy form have been formulated and solved using the MATLAB Simulink software package. A comprehensive criterion for optimizing the static and dynamic characteristicsof the belt conveyor hydraulic drive has been developed. Graphs of dynamic processes before and after optimizing static and dynamic characteristics have been provided depending on the parameters of the control device construction. The minimum value of the comprehensive criterion optimization corresponding to rational parameters of the control device construction has been calculated. Based on these parameters, a three-dimensional modelof the control device has been developed. The obtained research and calculations will be useful for engineers and scientists during the developmentand design of new hydraulic equipment.
Projektowanie nowego sprzętu hydraulicznego wymaga uwzględnienia specyfiki trybów pracy maszyn technologicznych. Dotyczyto w szczególności napędu hydraulicznego przenośnika taśmowego, który pracuje w warunkach zmiennego obciążenia. Dlatego też badania mające na celu obniżenie wskaźników charakterystyk statycznych i dynamicznych, obliczenia projektowe, a także modelowanie trójwymiarowe stanowią istotne zadania dla inżynierów i naukowców. Rozważono różne metody optymalizacji procesów dynamicznych. Preferencję nadano metodzie programowania liniowego jako głównej metodzie optymalizacji procesów dynamicznych w napędzie hydraulicznym w warunkach przeciążenia. Opracowano podstawowe schematy napędu hydraulicznego przenośnika taśmowego i urządzenia sterującego oraz opisano ich zasady działania. Sformułowano i rozwiązano nieliniowe równania różniczkowe w postaci Cauchy'ego przy użyciu pakietu oprogramowania MATLAB Simulink. Opracowano kompleksowe kryterium optymalizacji charakterystyk statycznych i dynamicznych napędu hydraulicznego przenośnika taśmowego. Przedstawiono wykresy procesów dynamicznych przedipo optymalizacji charakterystyk statycznych i dynamicznych w zależności od parametrów konstrukcji urządzenia sterującego. Obliczono minimalną wartość kompleksowej optymalizacji kryterium odpowiadającej racjonalnym parametrom konstrukcji urządzenia sterującego. Na podstawietych parametrów opracowano trójwymiarowy model urządzenia sterującego. Uzyskane badania i obliczenia będą przydatne dla inżynierów i naukowców podczas opracowywania i projektowania nowych urządzeń hydraulicznych.
Rocznik
Tom
Strony
124--129
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr.
Twórcy
autor
- Vinnytsia National Technical University, Vinnytsia, Ukraine
autor
- Vinnytsia National Technical University, Vinnytsia, Ukraine
autor
- Vinnytsia National Technical University, Vinnytsia, Ukraine
autor
- Vinnytsia National Technical University, Vinnytsia, Ukraine
autor
- Vinnytsia National Technical University, Vinnytsia, Ukraine
Bibliografia
- [1] Al-Fadhli A., Khorshid E.: Payload oscillation control of tower crane using smooth command input. Journal of Vibration and Control 29(3-4), 2023, 902–915 [https://doi.org/10.1177/10775463211054640].
- [2] Bao Z.: Study on simulation of system dynamic characteristics of hydraulic scissor lift based on load-sensing control technology. IOP Conference Series: Materials Science and Engineering [https://doi.org/10.1088/1757-899X/612/4/042036]. 612, 2019, 042036
- [3] Bereziuk O., et al.: Transient processes quality indicators of the rotation lever hydraulic drive for the dust-cart manipulator. Design, Simulation, Manufacturing: The Innovation Exchange. Springer, Cham 2023, 3–12 [https://doi.org/10.1007/978-3-031-32774-2_1].
- [4] Bereziuk O. V., et al.: High-precision ultrasonic method for determining the distance between garbage truck and waste bin. Mechatronic Systems 1. Routledge 2021, 279–290 [https://doi.org/10.1201/9781003224136-24].
- [5] Bian T., et al.: Failure mode and effects analysis based on d numbers and topsis. Quality and Reliability Engineering International 34(4), 2018, 501–515 [https://doi.org/10.1002/qre.2268].
- [6] Chen H., et al.: Power parametric optimization of an electro-hydraulic integrated drive system for powercarrying vehicles based on the taguchi method. Processes 10(5), 2022, 867 [https://doi.org/10.3390/pr10050867].
- [7] Fathollahi-Fard A. M., Ahmadi A., Karimi B.: Multi-objective optimization of home healthcare with working-time balancing and care continuity. Sustainability 13(22), 2021, 12431 [https://doi.org/10.3390/su132212431].
- [8] Geng B., et al.: Stability analysis of the output speed in a hydraulic system powered by an inverter-fed motor. Lubricants 12(3), 2024, 64 [https://doi.org/10.3390/lubricants12030064].
- [9] Gubarev A., et al.: Calculations of unsteady processes in channels of a hydraulic drive. Mechatronic Systems 1, Routledge 2021, 149–160 [https://doi.org/10.1201/9781003224136-13].
- [10] Huang G., et al.: CFD-based physical failure modeling of directdrive electrohydraulic servo valve spool and sleeve. Sensors 22(19), 2022, 7559 [https://doi.org/10.3390/s22197559].
- [11] Hunko I., et al.: The influence of wave processes of hydraulic oils on the operation of a hydraulic drive. Agricultural Engineering 26(1), 2022, 91–104 [https://doi.org/10.2478/agriceng-2022-0008].
- [12] Jongen H. T., Meer K., Triesch E.: Optimization Theory. Springer, 2004 [https://doi.org/10.1007/b130886].
- [13] Karpenko M.: Aircraft hydraulic drive energy losses and operation delay associated with the pipeline and fitting connection. Aviation 28(1), 2024, 1–8 [https://doi.org/10.3846/aviation.2024.20946].
- [14] Kozlov L., et al.: Optimization of design parameters of a counterbalance valve for a hydraulic drive invariant to reversal loads. Mechatronic Systems 1. Routledge 2021, 137–148 [https://doi.org/10.1201/9781003224136-12].
- [15] Kovalevskyy S., et al.: Analysis of accuracy and adequacy of dynamic models of objects. New Technologies, Development and Application III 6. Springer International Publishing, 2020, 75–80 [https://doi.org/10.1007/978-3-03046817-0_8].
- [16] Li S., et al.: Nonlinear dynamics of pilotoperated hydraulic control valves for submersible based on improved newmark-integration method. IEEE Access 11, 2023, 140238–140252 [https://doi.org/10.1109/ACCESS.2023.3342322].
- [17] Loveikin V., et al.: Optimization of the mode of movement of the boom system of the loader crane. Strength of Materials and Theory of Structures 111, 2023, 223–236 [https://doi.org/10.32347/2410-2547.2023.111.223-236].
- [18] Loveikin V. S., et al.: Minimization of oscillations of the tower crane slewing mechanism in the steadystate mode of trolley movement. Archive of Mechanical Engineering 70(3), 2023, 367–385 [https://doi.org/10.24425/ame.2023.146847].
- [19] Mamedov A., et al.: Analysis of factors affecting destabilization of a viscous liquid flow in channels. International Journal of Applied Mechanics and Engineering 28(3), 2023, 86–100 [https://doi.org/10.59441/ijame/172899].
- [20] Parmar N. J., et al.: Failure mode and effects analysis of hydraulic direct drive of belt conveyor system using a hybrid fuzzy ahp and fuzzy topsis method. 2023 [https://doi.org/10.2139/ssrn.4519785].
- [21] Petrov O., et al.: Energy Saving Load-Sensing Hydraulic Drive Based on Multimode Directional Control Valve. Design, Simulation, Manufacturing: The Innovation Exchange. Springer International Publishing, Cham 2021, 371–380 [https://doi.org/10.1007/978-3-030-77823-1_37].
- [22] Polishchuk L., et al.: Application of hydraulic automation equipment for the efficiency enhancement of the operation elements of the mobile machinery. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Srodowisk 9(2), 2019, 72–78 [https://doi.org/10.5604/01.3001.0013.2553].
- [23] Polishchuk L. K., et al.: Dynamics of the conveyor speed stabilization system at variable loads. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Srodowisk 12(2), 2022, 60–63 [https://doi.org/10.35784/iapgos.2949].
- [24] Romasevych Y., Loveikin V., Loveikin A.: Investigation of an influence of a ratio "swarm size-iterations number" on particle swarm optimization performance. IEEE 3rd KhPI Week on Advanced Technology (KhPIWeek). 2022, 1–4 [https://doi.org/10.1109/KhPIWeek57572.2022.9916498].
- [25] Romasevych Y., Loveikin V., Malinevsky O.: The method of calculating the maximum torque when jamming the auger of the screw conveyor. Machinery & Energetics 13(2), 2022, 83–90 [https://doi.org/10.31548/macheуnergy.13(2).2022.83-9].
- [26] Shao S., Abdi E., McMahon R.: Stable operation of the brushless doubly-fed machine (BDFM). 7th International Conference on Power Electronics and Drive Systems, 2007, 897–902 [https://doi.org/10.1109/PEDS.2007.4487811].
- [27] Singh A., et al.: Review on Conveyor Systems and Thermography. Journal of Engineering Science & Technology Review 13(1), 2020 [https://doi.org/10.25103/jestr.131.23].
- [28] Singh V. P., et al.: Experimental evaluation of a novel electro-hydrostatic steering solution for off-road mobile machinery. Energy Conversion and Management 332, 2025, 119710 [https://doi.org/10.1016/j.enconman.2025.119710].
- [29] Sorensen J. K., Hansen M. R., Ebbesen M. K.: Numerical and experimental study of a novel concept for hydraulically controlled negative loads. Modeling, Identification and Control 37(4), 2016, 195–211 [https://doi.org/10.4173/mic.2016.4.1].
- [30] Sun H., et al.: Optimal energy consumption and response capability assessment for hydraulic servo systems containing counterbalance valves. Journal of Mechanical Design 14(5), 2023, 053501 [https://doi.org/10.1115/1.4056497].
- [31] Syed I., et al.: Hydraulic conveyors, bucket conveyors, and monorails. Transporting Operations of Food Materials Within Food Factories. Woodhead Publishing, 2023, 293–313 [https://doi.org/10.1016/B978-0-12818585-8.00013-1].
- [32] Szwemin P., et al.: CFD Approach and Visualization of Fluid Flow in a Single Acting Vane Pump. International Scientific-Technical Conference on Hydraulic and Pneumatic Drives and Control. Springer Nature Switzerland, Cham 2023, 33–43 [https://doi.org/10.1007/978-3-031-43002-2_4].
- [33] Urbanowicz K., et al.: Theoretical and experimental investigations of transient flow in oil-hydraulic small-diameter pipe system. Engineering Failure Analysis 128, 2021, 105607 [https://doi.org/10.1016/j.engfailanal.2021.105607].
- [34] Wang F., et al.: Improving productivity of a battery powered electric wheel loader with electric-hydraulic hybrid drive solution. Journal of Cleaner Production 440, 2024, 140776 [https://doi.org/10.1016/j.jclepro.2024.140776].
- [35] Wojcik W., et al.: Metrological aspects of controlling the rotational movement parameters of the auger for dewatering solid waste in a garbage truck. International Journal of Electronics and Telecommunications 69(2), 2023, 233–238 [https://doi.org/10.24425/ijet.2023.144355].
- [36] Yan J. R., et al.: The design and research of hydraulic drive auto lift machine based on solidworks. Applied Mechanics and Materials 711, 2015, 108–111 [https://doi.org/10.4028/www.scientific.net/AMM.711.108].
- [37] Yang M.: Study on the digital hydraulic driving system of the belt conveyor. Machines 10(6), 2022, 417 [https://doi.org/10.3390/machines10060417].
- [38] Yang W., Liu B., Xiao R.: Three-dimensional inverse design method for hydraulic machinery. Energies 12(17), 2019, 3210 [https://doi.org/10.3390/en12173210].
- [39] Zhang F.: Design of Hydraulic Control System for Press Machine and Analysis on Its Fluid Transmission Features. International Journal of Heat & Technology, 39(1), 2021, 161–169 [https://doi.org/10.18280/ijht.390117].
- [40] Zhou X., et al.: Reliability optimization design of hydraulic system considering oil contamination. Journal of Mechanical Science and Technology 34, 2020, 5041–5051 [https://doi.org/10.1007/s12206-020-1108-1].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8e961dcf-80fd-4fd5-a9b6-389b868caeb5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.