PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The application of numerical modeling to geothermal investments

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Among numerous applications of numerical modeling in many different fields of science, there is numerical modeling applied to the issues related to geothermal investments [1]. A number of important parameters and properties can be estimated based on numerical modeling. In the case of geothermal investments, we can determine several factors, which may influence operation of the heating plants, e.g.: exploitation and size of extraction and/or injection of groundwaters, selection of an optimal spacing of boreholes (in the case of geothermal doublets), and water temperature or pressure [2]. This paper presents the issues related to the numerical modeling of geothermal reservoirs as well as a variety of computer software packages commonly used in creation of static and dynamic models, such as: Visual MODFLOW, TOUGH, FEFLOW or Petrel [3, 4]. The process of numerical modeling is presented in four general steps: (1) archival data collection and analysis (often using statistical methods), (2) creation of the static and (3) dynamic numerical models of a reservoir, and (4) environmental, financial and technical assessments based on a mathematical model of surface installation [5]. Each step is presented in details and the most important reservoir parameters, which influence the utilization of geothermal energy, are discussed. At the end, the main directions in current utilization of geothermal waters in Poland and the future opportunities of geothermal heat generation, including the financial aspects related to geothermal investments, are discussed.
Rocznik
Strony
385--395
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
  • Department of Fossil Fuels Faculty of Geology, Geophysics and Environmental Protection AGH University of Science and Technology al. A. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • Department of Environmental Management and Protection Faculty of Mining Surveying and Environmental Engineering AGH University of Science and Technology al. A. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • Department of Fossil Fuels Faculty of Geology, Geophysics and Environmental Protection AGH University of Science and Technology al. A. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • Department of Fossil Fuels Faculty of Geology, Geophysics and Environmental Protection AGH University of Science and Technology al. A. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] M. Miecznik. Problems of 3D numerical modeling of geothermal reservoirs [in Polish: Problematyka modelowania numerycznego 3D złóż geotermalnych]. Mineral and Energy Economy Research Institute, Polish Academy of Sciences, 1–2: 61–73, 2010.
  • [2] J. Kapuściński. Model of heat transport for the recognition of thermal waters [in Polish: Model transportu ciepła dla ujęcia wód termalnych]. [In:] Methods of Mathematical Modeling in Research and Hydrogeological Calculations – Handbook [in Polish: Metodyka modelowania matematycznego w badaniach i obliczeniach. hydrogeologicznych – Poradnik], S. Dąbrowski, J. Kapuściński, K. Nowicki, J. Przybyłek, A. Szczepański [Eds.], pp. 283–290, Hydroconsult Sp. z o.o., Biuro Studiów i Badań Hydrogeologicznych i Geofizycznych, 2010.
  • [3] M. Dendys, B. Tomaszewska, L. Pająk. Numerical modelling in research on geothermal systems. Bulletin of Geography. Physical Geography Series, 9: 39–44, 2010.
  • [4] M. Michna, B. Papiernik. Analysis of geological risk elements in the Suliszewo-Radęcin area from the point of view of carbon dioxide storage. Biuletyn Państwowego Instytutu Geologicznego, 448(1): 81–86, 2012.
  • [5] L. Pająk, W. Bujakowski. Evaluation impact of exploitation parameters changes and the economic effects [in Polish: Ocena wpływu zmian parametrów eksploatacyjnych oraz efektów ekonomicznych]. [In:] Atlas of the possible use of geothermal waters for combined production of electricity and heat using binary systems in Poland, W. Bujakowski, B. Tomaszewska [Eds], pp. 132–137, Wydawnictwo JAK, 2014.
  • [6] S. Dąbrowski, J. Kapuściński, K. Nowicki, J. Przybyłek, A. Szczepański. Methods of Mathematical Modeling in Research and Hydrogeological Calculations – Handbook [in Polish: Metodyka modelowania matematycznego w badaniach i obliczeniach hydrogeologicznych – Poradnik], 2010.
  • [7] Murray-Darling Basin Commission. Groundwater flow modelling Guideline. Project No. 125 Final Guideline – Issue I, Aquaterra Consulting Pty Ltd ABN, South Perth 6151 Western Australia, 2000.
  • [8] J. Kapuściński. Mathematical modeling in the process of documentation of resources of thermal water for heating plant in Pyrzyce [in Polish: Modelowanie matematyczne w procesie dokumentowania zasobów wód termalnych dla ciepłowni w Pyrzycach (woj. szczecińskie)]. Przegląd Geologiczny, 45(2): 179–181, 1997.
  • [9] K. Pruess, C. Oldenburg, G. Moridis. TOUGH2 user’s guide, version 2.0. Report LBNL-43134, Lawrence Berkeley National Laboratory Berkeley California, 1999.
  • [10] W. Bujakowski, B. Tomaszewska. Atlas of the Possible use of Geothermal Waters for Combined Production of Electricity and Heat Using Binary Systems in Poland, 2014.
  • [11] O. Dubrule. Geostatistics in Petroleum Geology. AAPG Continuing Education Course Note Series No 38. AAPG Tulsa, Oklahoma, 1998.
  • [12] O. Dubrule Geostatistics for Seismic Data Integration in Earth Models. Distinguished Instructor Short Course. Distinguished Instructor Series. SEG/EAGE. Tulsa, Oklahoma, 2003.
  • [13] S.J. Jolley, D. Barr, J.J. Walsh, R.J. Knipe [Eds.] Structurally Complex Reservoirs. Special Publication Geological Society of London, No. 292, pp. 488, 2007.
  • [14] T.C. Coburn, J.M. Yarus, R.L. Chambers [Eds.]. Stochastic Modeling and Geostatistics: Principles, Methods, and Case Studies, Volume II. AAPG Computer Applications in Geology, Tulsa, Oklahoma, 2007.
  • [15] H. Omre, H. Tjelmeland, Y. Hinderaker, L. Qi. Assessment of uncertainty in the production characteristics of a sandstone reservoir. [In:] Reservoir Characterization III, B. Linville [Ed.], pp. 556–603, Pennwell Books, Tulsa, Oklahoma, 1993.
  • [16] J.P. Chilès, P. Delfiner. Geostatistics: Modeling Spatial Uncertainty. Wiley Series in Probability and Statistics, Wiley & Sons, 1999.
  • [17] P. Abrahamsen, R. Hauge, K. Haggland, P. Mostad. Estimation of gross rock volume of filled geological structures with uncertainty measures. SPE Reservoir Evaluation and Engineering, 3(4): 304–309, 2000.
  • [18] P. Thor, A. Shtuka, M. Lecour, T. Ait-Ettajer, R. Cognot. Structural uncertainties: determination, management, and applications. Geophysics, 67(3): 840–852, 2002.
  • [19] K.E. Zakrevsky. Geological 3D Modeling. EAGE Publications Houten, Netherlands, 2011.
  • [20] B. Papiernik et al. Development of detailed static models of the geological disposal facility – Modeling the deep structure of the aquifers in the region of northern Polish (task 1.15) [in Polish: Opracowanie szczegółowych statycznych modeli ośrodka geologicznego składowisk – Modelowanie głębokiej struktury wodonośnej w rejonie północnej Polski (zadanie 1.15)]. [In:] Assessment of formations and structures for safe CO2 storage and monitoring plans [in Polish: Rozpoznanie formacji i struktur do bezpiecznego składowania CO2 wraz z ich programem monitorowania]. Konsorcjum z PIG Warszawa, INiG, GIG, PAN (Agreement No 2/SEK/2009). Manager: A. Wójcicki. Realization: 2008–2012. Financing: National Fund for Environmental Protection and Water Management, 2011.
  • [21] J. Herwanger, N. Koutsabeloulis. Seismic Geomechanics: How to Build and Calibrate Geomechanical Models Using 3D and 4D Seismic Data. EAGE Publications BV, 2011.
  • [22] J.L. Mallet. Numerical Earth Models. EAGE Publications, 2008.
  • [23] T. Kempka, C.M. Nielsen, P. Frykman, J.-Q. Shi, G. Bacci, F. Dalhoff. Coupled hydro-mechanical simulations of CO2 storage supported by pressure management demonstrate synergy benefits from simultaneous formation fluid extraction, Oil Gas Sci. Technol., 70(4): 599–613, 2014. doi:10.2516/ogst/2014029.
  • [24] B. Papiernik. Evaluation of oil and gas potential of Proszowice – Busko – Pińczów area (southern part of the Miechów Trough) supported by static three-dimensional computer modeling [in Polish: Ocena ropo-gazonośności obszaru Proszowice – Busko – Pińczów w południowej części niecki miechowskiej, wspomagana trójwymiarowym statycznym modelowaniem komputerowym], D.Sc. Thesis. AGH KSE, Kraków 2010.
  • [25] B. Papiernik, A. Zając. Comprehensive use of PetroWorks, StratWorks and ZMAP-Plus software for the property and lithology spatial variability analysis [in Polish: Kompleksowe wykorzystanie programów PetroWorks, StratWorks i ZMAP-Plus do celów przestrzennej analizy zmienności facjalno-zbiornikowej]. Materiały konferencyjne. Szkolenie użytkowników oprogramowania firmy Landmark, 22–25 październik 2003, Czarna, 2003.
  • [26] B. Papiernik. Lithofacial model of the Upper Badenian strata [in Polish: Model litofacjalny górnego Badenu], [In:] The analysis of the potential hydrocarbon traps based on seismic and geological analysis in Drohobyczka area [in Polish: Analiza potencjalnych pułapek złożowych w oparciu o badania sejsmiczne i analizy geologiczne w strefie Drohobyczki], W. Górecki et al. [Ed.], Towarzystwo Geosynoptyków GEOS, 2003.
  • [27] C. Deutsch, A.G. Journel. GSLIB: Geostatistical Software Library and User’s Guide. New York, Oxford University press, pp. 340, 1992.
  • [28] C. Deutsch, A.G. Journel. GSLIB: Geostatistical Software Library and User’s Guide. Oxford University Press, New York, 1998.
  • [29] E.H. Isaaks, R.M. Srivastava. An introduction to applied geostatistics. Oxford University Press, New York, 1989.
  • [30] J.J. Gomez-Hernandez, A.G. Journel. Joint sequential simulation of multiGaussian fields. [In:] Geostatistics Troia’92, Soares [Ed.], Kluwer Publishing, pp. 85–94, 1993.
  • [31] T.E. Reilly. System and boundary conceptualization in ground-water flow simulatio. USGS, 2001. [32] K. Miotliński. Geochemical modeling, online presentation. 2013. (http://khgi.wnoz.us.edu.pl)
  • [33] W. Bujakowski, P. Wojnarowski. Geothermal system in Mszczonów – characteristic and exploitation [in Polish: System geotermalny w Mszczonowie – charakterystyka i eksploatacja]. Technika Poszukiwań Geologicznych, 44(1–2), 38–45, 2005.
  • [34] A. Sapińska-Śliwa, P. Wojnarowski, A. Gonet. Analysis of Uniejów geothermal water reservoirs modeling in view of various aspects of geothermal water and heat management. Proceedings of World Geothermal Congress 2010, Bali, Indonesia, 2010.
  • [35] L. Pająk. Hydrodynamic basics of geothermal water injection [in Polish: Podstawy hydrodynamiczne zatłaczania wód geotermalnych]. [In:] Designing guidelines to improve the absorption capacity of reservoir rocks due to injection of thermal water in Polish geothermal heating plants [in Polish: Wytyczne projektowania poprawy chłonności skał zbiornikowych w związku z zatłaczaniem wód termalnych w polskich zakładach geotermalnych], B. Kępińska, W. Bujakowski [Eds.], pp. 7–19, Wydawnictwo EJB, Kraków, 2011.
  • [36] B. Tomaszewska, L. Pająk. Dynamics of clogging processes in injection wells used to pump highly mineralized thermal waters into the sandstone structures lying under the Polish Lowlands. Archives of Environmental Protection, 38(3): 105–117, 2012.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8e95e42e-20da-459d-8ad5-42d716e566e8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.