PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of Gravity Gradients in the Process of GOCE Orbit Determination

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The possibility of improving the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) mission satellite orbit using gravity gradient observations was investigated. The orbit improvement is performed by a dedicated software package, called the Orbital Computation System (OCS), which is based on the classical least squares method. The corrections to the initial satellite state vector components are estimated in an iterative process, using dynamic models describing gravitational perturbations. An important component implemented in the OCS package is the 8th order Cowell numerical integration procedure, which directly generates the satellite orbit. Taking into account the real and simulated GOCE gravity gradients, different variants of the solution of the orbit improvement process were obtained. The improved orbits were compared to the GOCE reference orbits (Precise Science Orbits for the GOCE satellite provided by the European Space Agency) using the root mean squares (RMS) of the differences between the satellite positions in these orbits. The comparison between the improved orbits and the reference orbits was performed with respect to the inertial reference frame (IRF) at J2000.0 epoch. The RMS values for the solutions based on the real gravity gradient measurements are at a level of hundreds of kilometers and more. This means that orbit improvement using the real gravity gradients is ineffective. However, all solutions using simulated gravity gradients have RMS values below the threshold determined by the RMS values for the computed orbits (without the improvement). The most promising results were achieved when short orbital arcs with lengths up to tens of minutes were improved. For these short arcs, the RMS values reach the level of centimeters, which is close to the accuracy of the Precise Science Orbit for the GOCE satellite. Additional research has provided requirements for efficient orbit improvement in terms of the accuracy and spectral content of the measured gravity gradients.
Czasopismo
Rocznik
Strony
521--540
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
  • University of Warmia and Mazury in Olsztyn, Department of Astronomy and Geodynamics, Olsztyn, Poland
Bibliografia
  • Bobojć, A., and A. Drożyner (2003), Satellite orbit determination using satellite gravity gradiometry observations in GOCE mission perspective, Adv. Geosci. 1, 109-112, DOI: 10.5194/adgeo-1-109-2003.
  • Bock, H., A. Jäggi, D. Švehla, G. Beutler, U. Hugentobler, and P. Visser (2007), Precise orbit determination for the GOCE satellite using GPS, Adv. Space Res. 39, 10, 1638-1647, DOI: 10.1016/j.asr.2007.02.053.
  • Bock, H., A. Jäggi, U. Meyer, P. Visser, J. van den Ijssel, T. van Helleputte, M. Heinze, and U. Hugentobler (2011), GPS-derived orbits for the GOCE satellite, J. Geodesy 85, 11, 807-818, DOI: 10.1007/s00190-011-0484-9.
  • Bouman, J., S. Fiorot, M. Fuchs, T. Gruber, E. Schrama, Ch. Tscherning, M. Veicherts, and P. Visser (2011), GOCE gravitational gradients along the orbit, J. Geodesy 85, 11, 791-805, DOI: 10.1007/s00190-011-0464-0.
  • Drożyner, A. (1995), Determination of orbits with Toruń Orbit Processor system, Adv. Space Res. 16, 12, 93-95, DOI: 10.1016/0273-1177(95)98788-P.
  • ESA (1999), Gravity field and steady-state ocean circulation mission, Report for mission selection of the four candidate Earth Explorer missions, ESA SP- 1233(1), European Space Agency, Noordwijk.
  • ESA (2008), GOCE L1B products user handbook, SERCO/DATAMAT Consortium, ESA Tech. Note GOCE-GSEG-EOPG-TN-06-0137, European Space Agency, Noordwijk.
  • ESA (2010), GOCE Level 2 Product Data Handbook, European GOCE Gravity Consortium; ESA Tech. Note GO-MA-HPF-GS-0110, European Space Agency, Noordwijk.
  • Eshagh, M. (2014), From tensor to vector of gravitation, Artif. Sat. 49, 2, 63-80, DOI: 10.2478/arsa-2014-0006.
  • Eshagh, M., and M. Najafi-Alamdari (2007), Perturbations in orbital elements of a low Earth orbiting satellite, J. Earth Space Phys. 33, 1, 1-12.
  • Heiskanen, W., and H. Moritz (1967), Physical Geodesy, WH Freeman and Co., San Francisco.
  • Johannessen, J.A., G. Balmino, C. le Provost, R. Rummel, R. Sabadini,H. Sünkel, C.C. Tscherning, P. Visser, P. Woodworth, C.W. Hughes, P. Legrand, N. Sneeuw, F. Perosanz,-M. Aguirre-Martinez, H. Rebhan, and M.R. Drinkwater (2003), The european gravity field and steady-state ocean circulation explorer satellite mission: its impact on geophysics, –Surv. Geophys. 24, 4, 339-386, DOI: 10.1023/B:GEOP.0000004264.04667.5e.
  • Mayer-Gürr, T., A. Eicker, and J. Schall (2010), Regional high resolution geoid and mean sea surface topography determination by a combination of GOCE, GRACE and altimetry data. In: ESA Living Planet Symposium, 28 June – 2 July 2010, Bergen, Norway.
  • Métris, G., J. Xu, and I. Wytrzyszczak (1999), Derivatives of the gravity potential with respect to -rectangular coordinates, Celest. Mech. Dyn. Astr. 71, 2, 137-151, DOI: 10.1023/A:1008361202235.
  • Palacios, M., A. Abad, and A. Elipe (1992), An efficient numerical method for orbit computations. In: Proc. AAS/AIAA Astrodynamics Conference, 19-22 August 1991, Durango, USA, Part 1 -(A92-43251 18-13), Univelt Inc., San Diego, 265-274.
  • Press, W.H., S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery (1986-1992), Numerical Recipes in FORTRAN 77: The Art of Scientific Computing, Cambridge University Press, New York.
  • Rebhan, H., M. Aguirre, and J. Johannessen (2000), The Gravity field and steadystate ocean circulation explorer mission – GOCE, ESA Earth Observ. Quart. 66, 6-11.
  • Rummel, R., and O.L. Colombo (1985), Gravity field determination from satellite gradiometry, Bull. Géod. 59, 3, 233-246, DOI: 10.1007/BF02520329.
  • Rummel, R.F., D. Muzi, M.R. Drinkwater, R. Floberghagen, and M. Fehringer (2009), GOCE: mission overview and early results. In: American Geophysical Union, Fall Meeting, 14-18 December 2009, San Francisco.
  • Rummel, R., W. Yi, and C. Stummer (2011), GOCE gravitational gradiometry, J. Geodesy 85, 11, 777-790, DOI: 10.1007/s00190-011-0500-0.
  • Yi, W., R. Rummel, and T. Gruber (2013), Gravity field contribution analysis of GOCE gravitational -gradient components, Studia Geophys. Geod. 57, 2, 174-202, DOI: 10.1007/s11200-011-1178-8.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8e91b117-1f82-4ccc-81cb-a456cb723e97
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.