PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ultrasonic vibrations as an impulse for glass transition in microforming of bulk metallic glass

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the idea of the utilisation of ultrasonic vibrations in microforming at elevated temperature of a bulk metallic glasses as an impulse of additional energy for initiating a glass transition at lower than nominal temperature. The method of micro-upsetting at elevated temperature with non-uniform temperature distribution (MUNUT) was used. It is shown that applying ultrasonic vibrations on the tool could replace the part of the thermal energy needed for achieving the supercooled liquid state necessary for the microforming of bulk metallic glass. The results of research are limited to the analysis of two micro-specimens only and their final state of deformation. The commercial FEM code was used in the Thermal/Structural analysis class to determine the temperature distribution within the micro-specimen and to justify the linear approximation of this distribution. It was shown that the application of ultrasonic vibrations at 20 kHz frequency and the amplitude PP = 36.5 μm under the experiment conditions lowered the transformation temperature by approx. 32 °C. Results suggesting that applying ultrasonic vibrations could be also used as the tool which would provide additional energy for the transformation at the limited area of the micro-product.
Rocznik
Strony
100--113
Opis fizyczny
Bibliogr. 53 poz., fot., rys., wykr.
Twórcy
  • Institute of Manufacturing Technologies Warsaw, University of Technology, ul. Narbutta 85, 02-524 Warsaw, Poland
  • Faculty of Materials Science and Engineering Warsaw, University of Technology, ul.Wołoska 141, 02-507 Warsaw, Poland
Bibliografia
  • [1] Y. Saotome, et al., Superplastic backward microextrusion of microparts for micro-electro-mechanical systems, J. Mater. Process. Technol. 119 (2001) 307–311.
  • [2] M. Geiger, U. Engel, F. Vollertsen, R. Kals, A. Messner, Metal forming of micro parts for electronics, Prod Eng II (1) (1994) 15–18.
  • [3] L.V. Raulea, et al., Size effect in the processing of thin metal sheets, J. Mater. Process. Technol. 115 (2001) 44–48.
  • [4] Y. Saotome, Microdeep drawability of very thin sheet steels, J. Mater. Process. Technol. 113 (2001) 641–647.
  • [5] M. Geiger, et al., Microforming, CIRP Ann. – Manufact. Technol. 50 (2) (2001) 445–462.
  • [6] L. Olejnik, W. Presz, A. Rosochowski, Backward extrusion using micro-blanked aluminium sheet, Int. J. Mater. Form. 2 (Suppl. 1) (2009) 617–627.
  • [7] N. Tiesler, Microforming – size effects in friction and their influence on extrusion process, Wire 52 (2002) 34–38.
  • [8] U. Engel, Tribology in microforming, Wear 260 (3) (2006) 265–270.
  • [9] W. Presz, Scale effect in design of the pre-stressed micro-dies for microforming,, Comput. Methods Mater. Sci. 16 (2016) 196–203.
  • [10] W. Presz, M. Rosochowski, Application of semi-physical modeling of interface surface roughness in design of prestressed microforming dies,Cambridge, U.K. Proc. Eng., Int. Conf. on the Technology of Plasticity, vol. 207 (2017) 1004–1009.
  • [11] J.Q. Ran, et al., The influence of size effect on the ductile fracture in micro-scaled plastic deformation, Int. J. Plast. 41 (2013) 65–81.
  • [12] W. Presz, et al., Piezoelectric driven Micro-press for microforming, AMME2006, J. Achiev. Mater. Manufact. Eng. 18 (2006) 411–414.
  • [13] W. Presz, R. Cacko, Application of complex micro-die for extrusion of micro-rivets for micro-joining, in: Proc. of the 26th Int. Conference on Metallurgy and Materials – Metal, 2017, 514–520.
  • [14] N.A. Paldan, et al., Piezo driven prestressing of die-system for microforming of metal components, Int. J. Mater. Form. 1 (2008) 467–470.
  • [15] A. Muster, W. Presz, Influence of initial surface roughness on galling behaviour of steel-steel couple, Scand. J. Metall. 28 (1) (1999) 5–8.
  • [16] W. Presz, M. Kaczorowski, Strengthening mechanisms of 1H18N9T austenitic steel buildups created with cold forming processes, Adv. Mater. Res. 23 (2007) 165–168.
  • [17] W. Presz, Contact phenomena in micro-blanking, Int. J. Mater. Form. 1 (2008) 471–474.
  • [18] C. Wang, et al., Tribological behaviors in microforming considering microscopically trapped lubricant at contact interface, Int. J. Adv. Manufact. Technol. 71 (2014) 2083–2090.
  • [19] D. Golanski, et al., Experimental investigation of displacement/strain fields in metal coatings deposited on ceramic substrates by thermal spraying, Solid State Phenom. 240 (2016) 174–182.
  • [20] T. Shimizu, et al., Micro-texturing of DLC thin film coatings and its tribological performance under dry sliding friction for microforming operation, Proc. Eng. 81 (2014) 1884–1889.
  • [21] A. Kocanda, W. Presz, et al., Contact pressure distribution In upsetting of compound metals, J. Mater. Process. Technol. 60-1 (4) (1996) 343–348.
  • [22] G.R. Dawson, C.E. Winsper, D.H. Snasome, Application of high- and low-frequency oscillation to the plastic deformation of metals, Metal Forming 4 (1970) 158–162.
  • [23] W. Presz, The influence of punch vibration on surfach phenomena in micro-extrusion, in: Proc. of the 9th Int. Conference on Material Forming, ESAFORM, 2006, 583–586.
  • [24] F. Luo, et al., An ultrasonic microforming process for thin sheet metals and its replication abilities, J. Mater. Process. Technol. 216 (2015) 10–18.
  • [25] E. Gale, J.F. Nevill, The effect of vibrations on the static yield strength of a low-carbon steel, ASTM Proc. 57 (1957) 751–758.
  • [26] F. Blaha, B. Langenecker, Plastizitätsuntersuchungen von metallkristallen in ultraschallfeld, Acta Metall. 7 (1959) 93–100.
  • [27] F. Djavanroodi, et al., Ultrasonic assisted-ECAP, Ultrasonics 53 (6) (2013) 1089–1096.
  • [28] B. Christina, N. Gracious, Influence of ultrasonic vibration on micro-extrusion, Ultrasonics 51 (2011) 606–616.
  • [29] J.-C. Hung, C. Hung, The influence of ultrasonic-vibration on hot upsetting, Ultrasonics 43 (2005) 692–698.
  • [30] S. Aziz Abdul, M. Lucas, The effect of ultrasonic excitation In metal forming tests, Appl. Mech. Mater. 24–25 (2010) 311–316.
  • [31] W. Presz, R. Cacko, Ultrasonic assisted microforming, in: Proc. of the 26th International Conference on Metallurgy and Materials – Metal, 2017, 521–526.
  • [32] Y. Daud, M. Lucas, Z. Huang, Modelling the effects of superimposed ultrasonic vibrations on tension and compression tests of aluminium, J. Mater. Process. Technol. 186 (2007) 179–190.
  • [33] A. Siddiq, T. El Sayed, Acoustic softening in metals during ultrasonic assisted deformation via CP-FEM, Mater. Lett. 65 (2011) 356–359.
  • [34] Z. Yao, G.-Y. Kim, Z. Wang, et al., Acoustic softening and residual hardening in aluminum: Modeling and experiments, Int. J. Plast. 39 (2012) 75–87.
  • [35] I. Lum, H. Huang, et al., Effects of superimposed ultrasound on deformation of gold, J. Appl. Phys. 105 (2009) 902–905.
  • [36] N.A. Tyapunina, et al., Characteristics of Plastic Deformation Under the Action of Ultrasound, M.V. Lomonosov Moscow State University, 1982, pp. 118–128 Translated from Izvesti Fa Vysshikh Uchebnykh Zavedenii, Fizika, vol. 6.
  • [37] P. Abhishek, et al., Dislocation density based constitutive model for ultrasonic assisted deformation, Mech. Res. Commun. 85 (2017) 76–80.
  • [38] U.F. Kocks, H. Mecking, Physics and phenomenology of strain hardening: the FCC case, Prog. Mater. Sci. 48 (2003) 171–273.
  • [39] M.M. Myshlyaev, et al., Change in characteristics of superplastic deformation of the aluminum–lithium alloy under the effect of ultrasonic vibrations, Phys. Solid State 57 (10) (2015) 2039–2044.
  • [40] H. Zhou, H. Cui, Q.-H. Qin, et al., A comparative study of mechanical and microstructural characteristics of aluminium and titanium undergoing ultrasonic assisted compression testing, Mater. Sci. Eng. 682 (2017) 376–388.
  • [41] Y. Liu, et al., Comparison between ultrasonic vibrationassisted upsetting and conventional upsetting, Metall. Mater. Trans. 44 (7) (2013) 3232–3244.
  • [42] A. Rosochowski, W. Presz, et al., Micro-extrusion of ultra-fine grain aluminium, Int. J. Adv. Manufact. Technol. 33 (2007) 137–146.
  • [43] W. Presz, A. Rosochowski, The influence of grain size on surface quality of microformed components, in: Proc. of the 9th International Conference on Material Forming, ESAFORM, 2006, 587–590.
  • [44] E. Ghassemali, et al., Grain size and workpiece dimension effects on material flow in an open-diemicro-forging/extrusion process, Mater. Sci. Eng. 582 (2013) 379–388.
  • [45] W.L. Johnson, Bulk metallic glasses – a new engineering material, Curr. Opin. Solid State Mater. Sci. 1 (3) (1996) 383–386.
  • [46] K. Pajor, T. Kozieł, G. Cios, P. Błyskun, P. Bała, A. Zielińska-Lipiec, Glass forming ability of the Zr50Cu40Al10 alloy with two oxygen levels, J. Non-Cryst. Solids 496 (2018) 42–47.
  • [47] P. Błyskun, J. Latuch, T. Kulik, Isothermal stability and selected mechanical propeties of Zr48Cu36Al8Ag8 bulk metallic glass, Arch. Metall. Mater. 62 (2017) 1749–1753.
  • [48] D. Wanga, et al., Finite element simulation and experimental investigation of forming micro-gear with Zr–Cu–Ni–Al bulk metallic glass, J. Mater. Process. Technol. 210 (2010) 684–688.
  • [49] Y. Quiang, et al., Finite element analysis on the microforming processes of Zr-based bulk metallic glass, in: Proc of the 16th International Conference on Computer Supported Cooperative Work in Design, 2012, 751–756.
  • [50] S.C. Son, et al., Research on micro vibration forming of Aibased superplastic alloy and zr-based bulk metallic glass, Int. Forum Strat. Technol. (2007) 495–498.
  • [51] W. Presz, The method of Micro-upsetting in uneven temperature distribution, in: Proc. of the 26th Int. Conference on Metallurgy and Materials – Metal, 2018 in press.
  • [52] W. Presz, Dynamic effect in ultrasonic assisted microupsetting, in: Proc. of the International Conference on Material Forming, Essaform, vol. 1960-1, 2018, 100012–100020.
  • [53] M. Guangcai, et al., Deformation Behavior of the Zr53.5Cu26.5Ni5Al12Ag3 bulk metallic glass over a wide range of strain rate and temperatures, J. Mater. Sci. Technol. 31 (2015) 941–945.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8e919739-d347-4427-82ce-efda18a653dd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.