PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

An Investigation of the MIMO Space Time Block Code Based Selective Decode and Forward Relaying Network over η–µ Fading Channel Conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we examine the end-to-end average pairwise error probability (PEP) and output probability (OP) performance of the maximum ratio combining (MRC) based selective decode and forward (S-DF) system over an η–µ scattering environment considering additive white Gaussian noise (AWGN). The probability distribution function (PDF) and cumulative distribution function (CDF) expressions have been derived for the received signal-to-noise (SNR) ratio and the moment generating function (MGF) technique is used to derive the novel closed-form (CF) average PEP and OP expressions. The analytical results have been further simplified and are presented in terms of the Lauricella function for coherent complex modulation schemes. The asymptotic PEP expressions are also derived in terms of the Lauricella function, and a convex optimization (CO) framework has been developed for obtaining optimal power allocation (OPA) factors. Through simulations, it is also proven that, depending on the number of multi-path clusters and the modulation scheme used, the optimized power allocation system was essentially independent of the power relation scattered waves from the source node (SN) to the destination node (DN). The graphs show that asymptotic and accurate formulations are closely matched for moderate and high SNR regimes. PEP performance significantly improves with an increase in the value of η for a fixed value of µ. The analytical and simulation curves are in close agreement for medium-to-high SNR values.
Słowa kluczowe
Rocznik
Tom
Strony
79--92
Opis fizyczny
Bibliogr. 45 poz., rys.
Twórcy
autor
  • Department of Electronics and Communication Engineering, Madanapalle Institute of Technology and Science, Andhra Pradesh, 517325, India
  • Department of Computer Science, Aurora's Degree and PG College, Chikkadapally Hyderabad, India
  • Department of Electronics and Communication, K L University Hyderabad, India
  • Department of ECE, Basaveshwar Engineering College, Bagalkot-587103, Karnataka, India
autor
  • Høgskulen på Vestlandet Bergen, Norway
Bibliografia
  • [1] M. K. Beuria, R. Shankar, and S. S. Singh, „Analysis of the energy harvesting non-orthogonal multiple access technique for defense applications over Rayleigh fading channel conditions", The J. of Defense Model. and Simulation, 2021 (DOI: 10.1177/15485129211021168).
  • [2] S. N. Swain, R. Thakur, and S. R. M. Chebiyyam, „Coverage and rate analysis for facilitating machine-to-machine communication in LTE-A networks using device-to-device communication", IEEE Trans. On Mob. Comput., vol. 16, no. 11, pp. 3014-3027, 2017 (DOI: 10.1109/TMC.2017.2684162).
  • [3] S. Pandya, M. A. Wakchaure, R. Shankar, and J. R. Annam, „Analysis of NOMA-OFDM 5G wireless system using deep neural network", The J. of Defense Model. and Simul., 2021 (DOI: 10.1177/1548512921999108).
  • [4] R. Shankar, „Examination of a non-orthogonal multiple access scheme for next generation wireless networks", The J. of Defense Model. and Simul., 2020 (DOI: 10.1177/1548512920951277).
  • [5] R. Shankar, K. N. Pandey, A. Kumari, V. Sachan, and R. K. Mishra, „C(0) protocol based cooperative wireless communication over Nakagami-m fading channels: PEP and SER analysis at optimal power", in Proc. IEEE 7th Ann. Comput. and Commun. Worksh. and Conf. CCWC 2017, Las Vegas, NV, USA, 2017 (DOI: 10.1109/CCWC.2017.7868399).
  • [6] N. Varshney, A. V. Krishna, and A. K. Jagannatham, „Selective DF protocol for MIMO STBC based single/multiple relay cooperative communication: end-to-end performance and optimal power allocation", IEEE Trans. on Commun., vol. 63, no. 7, pp. 2458-2474, 2015 (DOI: 10.1109/TCOMM.2015.2436912).
  • [7] N. Varshney, A. K. Jagannatham, and P. K. Varshney, „Cognitive MIMO-RF/FSO cooperative relay communication with mobile nodes and imperfect channel state information", IEEE Trans. on Cognitive Commun. and Network., vol. 4, no. 3, pp. 544-555, 2018 (DOI: 10.1109/TCCN.2018.2844827).
  • [8] K. Eltira, N. Jibreel, A. Younis, and R. Mesleh, „Capacity analysis of cooperative amplify and forward multiple-input multiple-output systems", Trans. on Emerg. Telecommun. Technol., vol. 32, no. 10 (DOI: 10.1002/ett.4290).
  • [9] H. K. Boddapati, R. B. Manav, and P. Shankar, „Performance of cooperative multi-hop cognitive radio networks with selective decode-and-forward relays", IET Commun., vol. 12, no. 20, pp. 2538-2545, 2018 (DOI: 10.1049/iet-com.2018.5328).
  • [10] A. Z. Afffy, A. Shawky, and N. Mazen, „A new inverse Weibull distribution: properties, classical and Bayesian estimation with applications", Kuwait J. of Sci., vol. 48, no. 3, 2021 (DOI: 10.48129/kjs.v48i3.9896).
  • [11] E. M. Almetwally et al., „Marshall-Olkin alpha power Weibull distribution: Different methods of estimation based on type-I and type-II censoring", Complexity, vol. 2021, article ID 5533799, 2021 (DOI: 10.1155/2021/5533799).
  • [12] R. Shankar, I. Kumar, A. Kumari, K. N. Pandey, and R. K. Mishra, „Pairwise error probability analysis and optimal power allocation for selective decode-forward protocol over Nakagami-m fading channels", in Proc. Int. Conf. on Algor., Methodol., Models and Appl. In Emerg. Technol. ICAMMAET 2017, Chennai, India, 2017 (DOI: 10.1109/ICAMMAET.2017.8186700).
  • [13] R. Shankar and R. K. Mishra, „An investigation of S-DF cooperative communication protocol over keyhole fading channel", Phys. Commun., vol. 29, pp. 120-140, 2018 (DOI: 10.1016/j.phycom.2018.04.027).
  • [14] R. Shankar and R. K. Mishra, „EP and OP examination of relaying network over time-selective fading channel", SN Appl. Sci., vol. 2, article ID: 1329, 2020 (DOI: 10.1007/s42452-020-3077-5).
  • [15] R. Shankar and R. K. Mishra, „S-DF cooperative communication system over time selective fading channel", J. of Inform. Sci. And Engin., vol. 35, no. 6, pp. 1223-1248, 2019 (DOI: 10.6688/JISE.201911 35(6).0004).
  • [16] R. Shankar and R. K. Mishra, „Outage probability analysis of selective-decode and forward cooperative wireless network over time varying fading channels with node mobility and imperfect CSI condition", in Proc. TENCON 2018 | 2018 IEEE Region 10 Conf., Jeju, South Korea, 2018, pp. 0508-0513 (DOI: 10.1109/TENCON.2018.8650275).
  • [17] C. B. Issaid, M.-S. Alouini, and R. Tempone, „On the fast and precise evaluation of the outage probability of diversity receivers over h-m, k-m, and h-m fading channels", IEEE Trans. Wirel. Commun., vol. 17, no. 2, pp. 1255-1268, 2018 (DOI: 10.1109/TENCON.2018.8650275).
  • [18] O. S. Badarneh and F. S. Almehmadi, „Performance analysis of L-branch maximal ratio combining over generalized h-m fading channels with imperfect channel estimation", IET Commun., vol. 10, no. 10, pp. 1175-1182, 2016 (DOI: 10.1049/iet-com.2015.1015).
  • [19] F. S. Almehmadi and O. S. Badarneh, „Performance analysis of out-age probability and error rate of square M-QAM in mobile wireless communication systems over generalized a-m fading channels with non-Gaussian noise", China Commun., vol. 15, no. 1, pp. 62-71, 2018 (DOI: 10.1109/CC.2018.8290806).
  • [20] H. Yu, G. Wei, F. Ji, and X. Zhang, „On the error probability of cross-QAM with MRC reception over generalized h-m fading channels", IEEE Trans. on Veh. Technol., vol. 60, no. 6, pp. 2631-2643, 2011, (DOI: 10.1109/TVT.2011.2154347).
  • [21] M. Bilim, „QAM signaling over k-m shadowed fading channels", Phys. Commun., vol. 34, pp. 261-271, 2019 (DOI: 10.1016/j.phycom.2019.04.005).
  • [22] M. Bilim and N. Kapucu, „On the analysis of achievable rate for NOMA networks with cooperative users over k-m shadowed fading channels", Int. J. Commun. Syst., vol. 32, no. 12, 2019 (DOI: 10.1002/dac.4001).
  • [23] S. Kumar and S. Kalyani, „Outage probability and rate for κ-μ shadowed fading in interference limited scenario", IEEE Trans. Wirel. Commun., vol. 16, no. 12, pp. 8289-8304, 2017 (DOI: 10.1109/TWC.2017.2760822).
  • [24] O. S. Badarneh and R. Mesleh, „A comprehensive framework for quadrature spatial modulation in generalized fading scenarios", IEEE Trans. Commun., vol. 64, no. 7, pp. 2961-2970, 2016 (DOI: 10.1109/TCOMM.2016.2571285).
  • [25] N. Bhargav, S. L. Cotton, and E. David Simmons, „Secrecy capacity analysis over κ-μ fading channels: theory and applications", IEEE Trans. Commun., vol. 64, no. 7, pp. 3011-3024, 2016 (DOI: 10.1109/TCOMM.2016.2565580).
  • [26] J. M. Moualeu and W. Hamouda, „On the secrecy performance analysis of SIMO systems over κ-μ fading channels", IEEE Commun. Lett., vol. 21, no. 11, pp. 2544-2547, 2017 (DOI: 10.1109/LCOMM.2017.2741458).
  • [27] J. M. Moualeu et al., „Physical-layer security of SIMO communications systems over multipath fading conditions", IEEE Trans. On Sustain. Comput., vol. 6, no. 1, pp. 105-118, 2019 (DOI: 10.1109/TSUSC.2019.2915547).
  • [28] H. Lei, I. S. Ansari, G. Pan, B. Alomair, and M.-S. Alouini, „Secrecy capacity analysis over α-μ fading channels", IEEE Commun. Lett., vol. 21, no. 6, pp. 1445-1448, 2017 (DOI: 10.1109/LCOMM.2017.2669976).
  • [29] J. M. Moualeu, D. B. da Costa, W. Hamouda, U. S. Dias, and R. A. A. de Souza, „Physical layer security over α-κ-μ and α-η-μ fading channels", IEEE Trans. on Veh. Technol., vol. 68, no. 1, pp. 1025-1029, 2019 (DOI: 10.1109/TVT.2018.2884832).
  • [30] J. Yang, L. Chen, X. Lei, K. P. Peppas, and T. Q. Duong,” Dual-hop cognitive amplify-and-forward relaying networks over η-μ fading channels", IEEE Trans. on Veh. Technol., vol. 65, no. 8, pp. 6290-6300, 2015 (DOI: 10.1109/TVT.2015.2480968).
  • [31] S. H. Alvi, S. Wyne, and D. B. da Costa, „Performance analysis of dual-hop AF relaying over α-μ fading channels", AEU-Int. J. of Electron. and Commun., vol. 108, pp. 221-225, 2019 (DOI: 10.1016/j.aeue.2019.06.013).
  • [32] J. M. Moualeu, T. M. N. Ngatched, and D. B. da Costa, „Sequential relay selection in D2D-enabled cellular networks with outdated CSI over mixed fading channels", IEEE Wirel. Commun. Lett., vol. 8, no. 1, pp. 245-248, 2019 (DOI: 10.1109/LWC.2018.2868645).
  • [33] S. Kumar et al., „Energy detection based spectrum sensing for gamma shadowed α-η-μ and α-k-μ fading channels", AEU-Int. J. of Electron. and Commun., vol. 93, pp. 26-31, 2018 (DOI: 10.1016/j.aeue.2018.05.031).
  • [34] T. F. Hailat, H. B. Salameh, and T. Aldalgamouni. „Performance study of multi-hop communication systems with decode-and-forward relays over a-m fading channels", IET Commun., vol. 11, no. 10, pp. 1641-1648, 2017 (DOI: 10.1049/iet-com.2016.1220).
  • [35] A. Hussain, A. K. Lee, S.-H. Kim, S.-H. Chang, and D. I. Kim, „Performance analysis of dual-hop variable-gain relaying with beamforming over κ-μ fading channels", IET Commun., vol. 11, no. 10, pp. 1587-1593, 2017 (DOI: 10.1049/iet-com.2016.1102).
  • [36] R. Shankar, L. Bhardwaj, and R. K. Mishra, „Analysis of selective-decode and forward relaying protocol over κ-μ fading channel distribution", J. of Telecommun. and Inform. Technol., no. 1, pp. 21-30, 2020 (DOI: 10.26636/jtit.2020.135919).
  • [37] Y. J. Chun et al., „A Comprehensive analysis of 5G heterogeneous cellular systems operating over κ-μ shadowed fading channels", IEEE Trans. on Wirel. Commun., vol. 16, no. 11, pp. 6995-7010, 2017 (DOI: 10.1109/TWC.2017.2734080).
  • [38] K. P. Peppas, G. C. Alexandropoulos, and P. T. Mathiopoulos, „Performance analysis of dual-hop AF relaying systems over mixed η-μ and κ-μ fading channels", IEEE Trans. on Veh. Technol., vol. 62, no. 7, pp. 3149-3163, 2013 (DOI: 10.1109/TVT.2013.2251026).
  • [39] D. Pant, P. S. Chauhan, S. K. Soni, and S. Naithani, „Channel capacity analysis of wireless system under ORA scheme over κ-μ inverse gamma and η-μ= inverse gamma composite fading models", in Proc. of Int. Conf. on Elec. and Electron. Engin. ICE3 2020, Gorakhpur, India, 2020, pp. 425-430 (DOI: 10.1109/ICE348803.2020.9122938).
  • [40] S. K. Yoo, S. L. Cotton, P. C. Sofotasios, S. Muhaidat, and G. K. Karagiannidis, „Effective capacity analysis over generalized composite fading channels", IEEE Access, vol. 8, pp. 123756-123764, 2020 (DOI: 10.1109/ACCESS.2020.3003207).
  • [41] C. Ben Issaid, M. Alouini, and R. Tempone, „On the fast and precise evaluation of the outage probability of diversity receivers over α-μ, and η-μ fading channels", IEEE Trans. on Wirel. Commun., vol. 17, no. 2, pp. 1255-1268, 2018 (DOI: 10.1109/TWC.2017.2777465).
  • [42] M. Bilim, „Uplink communication with AWGN over non-homogeneous fading channels", Phys. Commun., vol. 39, no. C, 2020 (DOI: 10.1016/j.phycom.2020.101047).
  • [43] P. Kumar and K. Dhaka, „Performance analysis of a decode-and-forward relay system in κ-μ and η-μ fading channels", IEEE Trans. on Veh. Technol., vol. 65, no. 4, pp. 2768-2775, 2016 (DOI: 10.1109/TVT.2015.2418211).
  • [44] K. Papazafeiropoulos and S. A. Kotsopoulos, „Second-order statistics for the envelope of α-kappa-μ fading channels", IEEE Commun. Lett., vol. 14, no. 4, pp. 291-293, 2010 (DOI: 10.1109/LCOMM.2010.04.092265).
  • [45] B. Samudhyatha, S. Gurugopinath, and K. Saraswathi, „Maximum eigenvalue-based spectrum sensing over α-κ-μ and α-η-μ fading channels", in Proc. of IEEE 28th Ann. Int. Symp. on Pers., Indoor, and Mob. Radio Commun. PIMRC 2017, Montreal, QC, Canada, 2017 (DOI: 10.1109/PIMRC.2017.8292575).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8e8fca78-fdd0-4293-8484-703ea5cd0174
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.