PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Difference in flotation behavior of galena by single and multi-step chronoamperometric oxidation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The relationship between electrochemical oxidation (Chronoamperometry) of galena surfaces and collocterless galena flotation was investigated in detail. The chronoamperometry (CA) micro- flotation experiments and zeta potential experiments were performed with ground galena particles (106×53 μm). In addition, contact angle measurements were carried out with a freshly cleaved galena sample at pH 4 in order to investigate any changes in galena surface hydrophobicity after the surface oxidation electrochemically. The results from this study indicated that there is a strong link between the nano/micro-physico-chemical properties of a sulphide on galena surfaces and collectorless flotation of galena particles at pH 4. The results were also supported with the electrokinetics behavior and contact angle values of galena particles.
Rocznik
Strony
812--821
Opis fizyczny
Bibliogr. 48 poz., rys. kolor.
Twórcy
  • Istanbul University-Cerrahpasa, Engineering Faculty, Mining Engineering Department, 34320, Avcilar, Istanbul, Turkey
  • The University of Queensland
autor
  • The University of Queensland
autor
  • The University of Queensland
Bibliografia
  • BAUER, C. and DIETRICH, S., 1999. Wetting films on chemically heterogeneous substrates, Phys. Rev. E, 60, 6, 6919-6941.
  • BHUSHAN, B., JUNG, Y.C. and KOCH, K., 2009. Micro-, nano- and hierarchical structures for superhydrophobicity, selfcleaning and low adhesion, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367, 1894, 1631-1672.
  • BLECUA, P., LIPOWSKY, R. and KIERFELD, J., 2006. Line tension effects for liquid droplets on circular surface domains, Langmuir, 22, 26, 11041-11059.
  • BUCKLEY, A.N. and RILEY, K.W., 1991. Self-induced floatability of sulphide minerals: Examination of recent evidence for elemental sulphur as the hydrophobic entity, Surface and Interface Analysis, 17, 9, 655-659.
  • CASSIE, A.B.D., 1948. Disc. Faraday Soc., 3, 11-19.
  • CASSIE, A.B.D. and BAXTER, S., 1944. Wettability of porous surfaces, Trans. Faraday Soc., 40, 546-550.
  • CHANDER, S., HOGG, R., 1988. Physical and surface characterization for mineral processing, Minerals and Metallurgical Processing152-161.
  • CHAU, T.T., BRUCKARD, W.J., KOH, P.T.L. and NGUYEN, A.V., 2009. A review of factors that affect contact angle and implications for flotation practice, Advances in Colloid and Interface Science, 150, 106-115.
  • DE CONINCK, J., BLAKE, T.D., CLARKE, A., DE RUIJTER, M.J. and VOUE, M., 1998. Droplet spreading: A microscopic approach, Book of Abstracts, 215th ACS National Meeting, Dallas, March 29-April 2COLL-065.
  • DE GENNES, P.G., 1985. Wetting: statics and dynamics, Rev. Mod. Phys., 57, 3, 827-863.
  • DE GENNES, P.G., BROCHARD-WYART, F. and QUERE, D., 2003. Capillarity and Wetting Phenomena. Berlin, Springer.
  • DE GIUDICI, G., RICCI, P., LATTANZI, P. and ANEDDA, A., 2007. Dissolution of the (001) surface of galena: An in situ assessment of surface speciation by fluid-cell micro-Raman spectroscopy, American Mineralogist, 92, 4, 518-524.
  • DETTRE, R.H. and JOHNSON, R.E., 1965. Contact Angle Hysteresis .4. Contact Angle Measurements on Heterogeneous Surfaces, J. Phys. Chem., 69, 5, 1507-1515.
  • ERBIL, H.Y., 2006. Surface Chemistry of Solid and Liquid Interfaces. Oxford, Blackwell Publishing.
  • EXTRAND, C.W., 2011. Repellency of the Lotus Leaf: Resistance to Water Intrusion under Hydrostatic Pressure, Langmuir, 27, 11, 6920-6925.
  • FORSBERG, P., NIKOLAJEFF, F. and KARLSSON, M., 2011. Cassie-Wenzel and Wenzel-Cassie transitions on immersed superhydrophobic surfaces under hydrostatic pressure, Soft Matter, 7, 1, 104-109.
  • GARDNER, J.R. and WOODS, R., 1979. A study of the surface oxidation of galena using cyclic voltammetry, Journal of Electroanalytical Chemistry, 100, 1-2, 447-459.
  • HAMPTON, M.A., PLACKOWSKI, C., BRUCKARD, W.J. and NGUYEN, A.V., 2012. In-situ investigation of sulfide mineral surface oxidation under controlled potential by combined Atomic Force Microscopy and Chronoamperometry, XXVI. International Mineral Processing Congress (IMPC), New Delhi, India,
  • HAMPTON, M.A., PLACKOWSKI, C. and NGUYEN, A.V., 2011. Physical and Chemical Analysis of Elemental Sulfur Formation during Galena Surface Oxidation, Langmuir, 27, 7, 4190-4201.
  • JOHNSON, R.E. and DETTRE, R.H., 1964. Contact Angle Hysteresis .3. Study of an Idealized Heterogeneous Surface, J. Phys. Chem., 68, 7, 1744-1750.
  • JOHNSON, R.E. and DETTRE, R.H., 1966. Wettability of Low-Energy Liquid Surfaces, J Colloid Interface Sci, 21, 6, 610-622.
  • KARGUPTA, K., KONNUR, R. and SHARMA, A., 2000. Instability and pattern formation in thin liquid films on chemically heterogeneous substrates, Langmuir, 16, 26, 10243-10253.
  • KOH, P.T.L., HAO, F.P., SMITH, L.K., CHAU, T.T. and BRUCKARD, W.J., 2009. The effect of particle shape and hydrophobicity in flotation, International Journal of Mineral Processing, 93, 2, 128-134.
  • KRASOWSKA, M. and MALYSA, K., 2007. Wetting films in attachment of the colliding bubble, Advances in Colloid and Interface Science, 134-135, 138-150.
  • KURSUN, I., 2009. Particle size and shape characteristics of Kemerburgaz quartz sands obtained by sieving, laser diffraction and digital image processing methods, Mineral Processing & Extractive Metall. Rev, 30(4), 346-360.
  • KURSUN, I., TERZI, M., OZDEMIR, O., 2018. Evaluation of digital image processing (DIP) in analysis of magnetic separation fractions from Na-feldspar ore, Arabian Journal of Geosciences, 11(16), 462.
  • LARMOUR, I.A., BELL, S.E., SAUNDERS, G.C., 2007. Remarkably simple fabrication of superhydrophobic surfaces using electroless galvanic deposition, Angew Chem Int Ed Engl., 46, 1710-1712.
  • LEJA, J., 1982. Surface Chemistry of Froth Flotation. New York, NY, Plenum Press.
  • LIPOWSKY, R., 2001. Morphological wetting transitions at chemically structured surfaces, Curr Opin Colloid Interface Sci., 6, 40-48.
  • LIPOWSKY, R., LENZ, P. and SWAIN, P.S., 2000. Wetting and Dewetting of Structured and Imprinted Surfaces, Colloids Surf., A, 161, 3-22.
  • MARMUR, A., 2004. The lotus effect: Superhydrophobicity and metastability, Langmuir, 20, 9, 3517-3519.
  • MARMUR, A., 2006. Underwater Superhydrophobicity: Theoretical Feasibility, Langmuir, 22, 1400-1402.
  • MENGES, F.R. (2008). Wetting of micro- and nanostructured hydrophobic surfaces. B. Sc., RWTH Aachen University of Technology
  • MILLER, J.D., VEERAMASUNENI, S., DRELICH, J., YALAMANCHILI, M.R. and YAMAUCHI, G., 1996. Effect of roughness as determined by atomic force microscopy on the wetting properties of PTFE thin films, Polym. Eng. Sci., 36, 14, 1849-1855.
  • NGUYEN, A.V. and SCHULZE, H.J., 2004. Colloidal Science of Flotation. New York, Marcel Dekker.
  • NOSONOVSKY, M. and BHUSHAN, B., 2008. Cassie-Wenzel Wetting Regime Transition. Multiscale Dissipative Mechanisms and Hierarchical Surfaces: Friction, Superhydrophobicity, and Biomimetics: 153-167.
  • PRINCE, K., HEUN, S., GREGORATTI, L., BARINOV, A. and KISKINOVA, M., 2002. Long-Term Oxidation Behaviour of Lead Sulfide Surfaces Nanoscale Spectroscopy and Its Applications to Semiconductor Research. Y. Watanabe, G. Salviati, S. Heun and N. Yamamoto, Springer Berlin / Heidelberg. 588: 111-120.
  • QUERE, D., 2008. Wetting and roughness. Annual Review of Materials Research, Palo Alto, Annual Reviews. 38: 71-99.
  • RICHARDSON, P.E., 1995. Surface Chemistry of Sulfide Flotation. Mineral Surfaces, D. J. Vaughan and R. A. D. Pattrick, London, Chapman & Hall: 261-272.
  • SHIKHMURZAEV, Y.D., 1997. Moving Contact Lines in Liquid/Liquid/Solid Systems, Journal of Fluid Mechanics, 334, 211-249.
  • SHIKHMURZAEV, Y.D., 2007. Capillary flows with forming interfaces New York, CRC Press.
  • ULUSOY, U. and YEKELER, M., 2005. Correlation of the surface roughness of some industrial minerals with their wettability parameters, Chemical Engineering and Processing: Process Intensification, 44, 5, 555-563.
  • ULUSOY, U., YEKELER, M. and HIÇYıLMAZ, C., 2003. Determination of the shape, morphological and wettability properties of quartz and their correlations, Minerals Engineering, 16, 10, 951-964.
  • ULUSOY, U., KURŞUN, I., 2011. Comparison of different 2d image analysis measurement techniques for the shape of talc particles produced by different media milling, MINERALS ENGINEERING, 24, 91-97.
  • VERRELLI, D.I., BRUCKARD, W.J., KOH, P.T.L., SCHWARZ, M.P. and FOLLINK, B., 2014. Particle shape effects in flotation. Part 1: Microscale experimental observations, Minerals Engineering, 58, 0, 80-89.
  • WONJAE, C., TUTEJA, A., MABRY, J.M., COHEN, R.E. and MCKINLEY, G.H., 2009. A modified Cassie–Baxter relationship to explain contact angle hysteresis and anisotropy on non-wetting textured surfaces, J Colloid Interface Sci, 339, 208-216.
  • XIA, Y. and WHITESIDES, G.M., 1999. Soft Lithography, Annu. Rev. Mater. Sci., 28, 153-184.
  • YEKELER, M., ULUSOY, U. and HIÇYıLMAZ, C., 2004. Effect of particle shape and roughness of talc mineral ground by different mills on the wettability and floatability, Powder Technology, 140, 1-2, 68-78.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8e8e0a46-2b55-4095-9ae8-e8b7f92f13a8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.